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1 Introduction 
Many coastal areas (e.g., Virginia Beach) are prone to flooding due to inadequate stormwater 
management infrastructure, rising sea levels, tidal effects, and intense precipitation. Replacing 
large amounts of infrastructure simultaneously is cost prohibitive, indicating a need for 
alternative approaches to resilience enhancement. In this project, the research team developed 
an approach to help increase the resilience of transportation operations during flooding and 
mitigate the danger to drivers and vehicle-related property damage by developing flood 
predictions, road closure messages, and re-routing. Vehicles on affected roadway segments at 
the time of the flood are in danger as are those entering flooded roadways. Road closures 
currently require physical resources, but sensor and communication technology can reduce the 
need for these resources, allowing them to be deployed elsewhere.  Driver delays can be 
reduced with knowledge of flooded areas and routing recommendations. 
 
1.1 Problem 
Flooding in urban areas, driven by both precipitation and high tide events, can have a 
devastating effect on a region’s transportation system and economic viability. In the City of 
Virginia Beach, the problem is acute as nuisance flooding in heavily populated areas impacts 
both communities and transportation infrastructure. Nuisance flooding, by definition, is 
“flooding that leads to public inconveniences such as road closures” (US Department of Commerce 
2014). Road closures due to flooding lead to the rerouting and/or the cancellation of affected trips 
(Pyatkova, Chen et al. 2015).  
 
The critical needs to identify the magnitude of floods are to measure and model precipitation 
intensity with a short lead time and relate to high tide events to plan proper protective measures 
for and diversion from problem areas. This study adopted a multi-disciplinary approach 
(hydrology, regional climate and precipitation forecasting, and transportation engineering) to 
predict roadway flooding and mitigate travelers’ danger from the flood and delays.   
 
From the hydrology/precipitation perspective, the research addressed flooding due to a 
complex relationship between tide levels and rainfall events. Rainfall and tidal gauge data were 
obtained from the City of Virginia Beach and other organizations and then analyzed using 
standard data mining approaches to identify relationships and patterns.  The research team 
adopted a data-driven approach whereby patterns of tidal levels and rainfall intensities and 
durations that cause flooding can be identified.  The data were also used in conjunction with 
weather forecasts in independent simulation using the Weather Research and Forecasting 
(WRF) Model to develop rainfall hyetograph forecasts.  
 
From the transportation perspective, the research team focused on two types of drivers: those 
who are on the road as the flood occurs and those who have not yet entered that particular road 
and must be re-routed.  For the first group, warning and road closures must be provided in time 
to remove these drivers from the impact area.  The amount of time required to clear the link 
depends on network traffic conditions and potentially other flooded areas.  The second group 
must be re-routed so as not to enter the affected link(s) and place the drivers in danger from 
flooding.  Both of these groups were affected by the flood. However, depending on their origins, 
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and intended destinations and paths, some vehicles could proceed with their trip as planned. The 
affected vehicles had origins, destinations and/or intermediate node(s) on soon-to-be flooded or 
closed links. In these cases, in-vehicle route guidance systems can assist the users in leaving the 
danger zone and selecting the best alternative path. In addition, in-vehicle route guidance systems 
could communicate warning messages to unaffected vehicles alerting them about the areas to 
avoid. 
 
The purposes of this project were to help assess the vulnerability of transportation infrastructure 
and increase the resilience of transportation operations during flooding and alleviate the 
adverse impacts to drivers and vehicle-related property damage. The focus of this research was 
on nuisance flooding, but the methods developed here can be extended to extreme weather 
events in the future.  The overall goals of this project were to (1) build knowledge on the nature 
of precipitation events that cause flooding and (2) improve traveler safety for flooding events.  
To achieve these goals, this project’s objectives were to:  

• identify patterns in the rainfall and tidal gauge data where tidal water levels and 
precipitation lead to flooding of roadways,  

• develop rainfall hyetograph forecasts,  
• project whether roadways will flood, and 
• provide routing guidance to en-route vehicles to avoid flooded links. 

 
1.2 Study Area 
This multi-disciplinary effort used the Tidewater region of Virginia as the study region. The 
regional climate and precipitation forecasting and transportation aspects were based in Virginia 
Beach with two locations illustrated in Figure 1.  These locations were selected based on the 
preferences and recommendations of Greg Johnson (stormwater) and Steve McLaughlin 
(transportation), both with the City of Virginia Beach.  According to these sources, the location 
shown in Figure 1a flooded four times in one summer.  The flooding happened through a 
combination of both tidal conditions and rainfall meaning it can flood at low tide with enough rain 
or at a very high tide with just a little rain, which makes for a challenging hydrologic model that 
can account for both tidal and precipitation conditions/forecasts.  The second location (Figure 1b) 
had the added challenge of a fire station that is occasionally out of commission due to localized 
flooding. However, due to data issues, the hydrology portion of the study could only be performed 
in Norfolk, VA. 
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(a) Baltic Ave. and 21st St.   (b) Shore Drive 

Figure 1 Case Study Locations in Virginia Beach 

1.3 Organization of the Report 
This report has three major chapters, each corresponding to one of the disciplines involved in this 
study.  Chapter 2 describes the weather forecasting aspects of the study and was authored by Dr. 
Venkataramana Sridhar and Prasanth Valayamkunnath. Chapter 3 describes the hydrology portion 
of the study and was authored by Dr. Jonathan Goodall and Jeffrey Sadler.  Chapter 4 discusses 
the transportation aspects of the study and was authored by Gaby Joe Hannoun, Antonio Fuentes, 
and Drs. Pamela Murray-Tuite and Kevin Heaslip. Each chapter contains its own methodology, 
findings, and conclusions. Finally, Chapter 5 provides some overall recommendations. 
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2 Weather 
The purpose of the weather portion of this study was to derive precipitation intensities and 
magnitudes. 
 
2.1 Data  
2.1.1 Meteorological Observations   
Gauge measured 15-minute precipitation data from 1 January 2016 to 31 December 2016 were 
accessed from the Hampton Roads Sanitation District (HRSD) for the City of Virginia Beach. This 
data was used in this study as the validation data for the Weather Research and Forecasting model 
simulated precipitation. The attributes of the rain gauge stations are provided in Table 1.  Figure 2 
shows the spatial distribution of the rain gauge stations.  
 

Table 1 Details of HRSD Rain Gauge Stations in Virginia Beach 

Station_ID Location x y 

MMPS-171 HRSD SP - Shipps Corner PRS 3717010 1053320 

MMPS-185 HRSD SF - Lagomar IFM at Atlantic IFM 3725430 1051520 

MMPS-163 HRSD SP - Providence PRS 3705870 1055870 

MMPS-255 VBCH PS - Virginia Beach PS 606 3721690 1051630 

MMPS-146 HRSD SP - Laskin Rd PRS 3722250 1060120 

MMPS-004 HRSD SF - John B. Dey MLV-AT side 3717470 1065180 

MMPS-256 VBCH PS - Virginia Beach PS 472 3705690 1051990 

MMPS-140 HRSD SP - Independence PRS 3710690 1058910 

MMPS-160 HRSD SP - Pine Tree PRS 3716430 1059490 

MMPS-144 HRSD SP - Kempsville PRS 3710390 1054080 

MMPS-036 HRSD SF - Northampton Blvd at Wesleyan Dr 3705530 1062830 

MMPS-093-2 HRSD TP - Ches-Liz Main Flow (Influent) 3708140 1066330 

 



5 
	

 
Figure 2 Spatial distribution of HRSD rain gauge stations shown on a base map of elevation for the study area. 

2.1.2 NCAR Upper-Air Observational Weather Data 
The US National Center for Atmospheric Research (NCAR) archives operational global 
meteorological observations which are used for data assimilation in real-time weather forecasting 
cases. The 6-hourly upper-air data assimilated in this study were accessed from the “ds351.0” 
dataset 1 , which contains the upper-air measurements of pressure, geopotential height, air 
temperature, dew point temperature, wind direction and speed from 1000 millibars to 1 millibar. 
The data were then converted into LITTLE_R (WRF data assimilation) format before they were 
assimilated in the 4D-Var system.  
 
2.1.3 Stage IV Precipitation Data (Radar +Gauge Observation) 
There are many radar-based and gauge-based precipitation products available for the study region 
developed by different agencies and institutions. The Stage IV national mosaic is the best radar 
and gauge-derived precipitation data available for CONUS generated operationally. This data2 is 
generated at 4km resolution using the regional hourly/6-hourly multi-sensor (radar + gauges) 
precipitation analyses produced by the 12 River Forecast Centers (RFCs). The data underwent 
manual quality control checking at the RFCs.  
 
2.2 Weather Research and Forecasting (WRF) Model 
The numerical experiments of precipitation data assimilation and high-resolution precipitation 
forecast were conducted using the Advanced Research WRF (ARW) model (version 3.7.1) 
(Skamarock and Klemp 2008). WRF is a state-of-the-art atmospheric modeling system designed 
for both mesoscale and microscale meteorological research and numerical weather prediction. 

																																																								
1	Data Source: https://rda.ucar.edu/datasets/ds351.0/#!description	
2	Data Source: https://rda.ucar.edu/datasets/ds507.5/	
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WRF is a non-hydrostatic model with advanced dynamics, physics, and numerical schemes. The 
WRF model is fully compressible. Its vertical coordinate is a terrain-following hydrostatic pressure 
coordinate. Detailed descriptions of the model can be found in the model manual (Skamarock, 
Klemp et al. 2005) and also on the WRF user website3.  
 
In order to describe the vertical pressure levels, sigma coordinates were adopted in the model and 
a two-way nesting was used for the interaction between mother and child domains. Each domain 
is comprised of 40 vertical pressure levels with the top level set at 100 hPa. This study used a grid 
spacing of 4 km in the inner domain and 12 km for the outer domain. The nested domain centered 
at 36.7460 N and 75.7360 W. The parent domain contains 235 x 235 grid points with 12 km 
resolution and the nested domain contains 226 x 223 grid points with 1/16th of a degree (4 km) 
resolution (Figure 3). The Hampton Roads region was the center of the inner domain. The model 
used MODIS-derived 20 category land cover and soil texture at 30 arcs second resolution. The 
WRF model was implemented for the two-way nested domain with two domains to convert the 
coarse resolution of NARR (32 km) data to high-resolution WRF domain data (1/16th of a degree). 
The WRF model simulations were performed with the adaptive time step option to minimize 
processing time in the Advanced Research Computing (ARC) at Virginia Tech.  
 
The WRF model comprises different physical parameterizations, including micro physics to 
cumulus, surface, planetary boundary layer and radiation physics. The model performance is 
highly dependent on the parameterization schemes. In this study, NCAR recommended 
parameterization schemes were used. The main physics schemes used in this study included the 
WRF Single-Moment 6-class (WSM6) microphysics scheme, the new Kain–Fritsch cumulus 
parameterization, the Yonsei University planetary boundary layer, the Dudhia shortwave radiation, 
and the Rapid Radiative Transfer Model (RRTM) longwave radiation schemes. Noah land surface 
model was used to represent the land surface physics and hydrology.  
 
The North American Regional Reanalysis (NARR) data was used to define initial and boundary 
condition of the WRF model. NARR is an extension of the NCEP Global Reanalysis. It is a high 
resolution (~32 km) combined model and assimilated dataset, from 1979 to near present and is 
provided 8-times daily as 3-hour composite, daily and monthly on a Northern Hemisphere Lambert 
Conformal Conic grid. The data has 29 pressure levels from 1000 hPa to 100 hPa4. The WRF 
model was initialized on 1 October 2015 12:00 UTC and continued the simulation until 31 
December 2016 23:00 UTC.  
 
2.3 Precipitation and Upper Air Meteorology Data Assimilation 
WRF Data Assimilation System (WRFDA) 4D-Var was used to assimilate NCEP Stage IV radar 
and gauge precipitation data along with upper air meteorology data. Both the data in the 
LITTLE_R format were assimilated in the 4D-Var system. NCEP Stage IV archived data at NCAR 
is in GRIB1 format. A tool “precip_converter” was used to reformat GRIB1 observations into the 
WRFDA-readable ASCII (LITTLE_R) format5. According to the WRFDA user manual, 6-hour 
precipitation accumulations from Stage IV are the ideal observations to be assimilated for 
simulating hourly precipitation.  In this study, before the WRFDA exercise, the precipitation in 
																																																								
3	http://www2.mmm.ucar.edu/wrf/users/	
4	Data source:  https://rda.ucar.edu/datasets/ds608.0/	
5	source:	http://www2.mmm.ucar.edu/wrf/users/wrfda/download/precip_converter.tar.gz 	
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Stage IV 4 km cell corresponding to latitude-longitude locations of HRSD gauges was adjusted 
with gauge observations at 6-hour time scale. The data assimilation process was employed only 
on the outer domain (12km domain). The background error covariance (b0) was obtained by 
computing the average difference between 12- and 24-h forecasts. 
 
2.4 Results 
2.4.1 Comparison of Rainfall Simulated by WRF and Gauge Observations 
The WRF simulated precipitation was compared with 12 HRSD gauge observations at 15 minute, 
1-hour and 24-hour time-steps. The statistics of comparison, percentage bias (PBIAS) and root 
mean square (RMSE) are given in Table 2. Percentage bias was significantly high with high 
temporal resolution (15-min) whereas the 24-hour time step analysis, PBIAS reduced significantly. 
RMSE was least with hourly rainfall data compared to 15-min and 24-hour analysis. The highest 
and lowest PBIAS was observed at location MMPS-144 and MMPS-185 respectively in all the 
three time-step analysis (Table 2). For all 12 locations, the WRF predicted rainfall was less by 
approximately 50% at the 15 –minute time step. However, the simulation results improved when 
the temporal aggregation was higher and the estimation was less by 21% at the hourly time-step. 
 

 
Figure	3	WRF	model	domain	with	study	area	highlighted	in	the	inner	red	box	(Figure 2). 
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Table 2 Validation Statistics for the WRF Simulated Rainfall with HRSD Observations 

 15-min 1-hour 24-hour 
Station PBIAS (%) RMSE, mm PBIAS (%) RMSE, mm PBIAS (%) RMSE, mm 
MMPS-004 -49.6 3.2 -15.7 1.3 -15.2 7.1 
MMPS-0.36 -61.6 2.7 -34.7 1.4 -33.9 8 
MMPS-140 -58.6 2.7 -31.4 1.5 -30.6 9.2 
MMPS-144 -63.1 2.5 -38.7 1.4 -38.1 8.8 
MMPS-146 -54.3 2.8 -24.8 1.2 -23.1 7.9 
MMPS-160 -53.0 2.8 -22.4 1.0 -21.9 6.9 
MMPS-163 -62.1 2.6 -36.1 1.2 -34.9 8.6 
MMPS-171 -52.5 2.8 -21.4 1.7 -22.0 22.0 
MMPS-185 -36.8 2.7 2.4 0.9 3.4 7.4 
MMPS-255 -39.8 2.7 -1.2 0.9 0.3 6.7 
MMPS-256 -51.0 2.5 -18.7 0.9 -17.3 4.5 
MMPS-0932 -52.1 2.9 -18.8 1.4 -18.2 6.9 

 
Since the proposed study area is Baltic Ave. and 21st Street and Shore Drive, the study selected 
three HRSD rainfall gauges close to this locations. The selected gauges were MMPS-004, MMPS-
093-2, and MMPS-036. Figure 4 shows the 24-hour time series of WRF and HRSD rainfall (mm) 
for the selected three gauges. At MMPS-004 location, WRF-simulated rainfall was less compared 
to HRSD for most of the time. But for July and September events (see Table 3), WRF 
overestimated the rainfall by 11 to 43 mm.  However for the October event, WRF underestimated 
rainfall by 90 mm. WRF simulated rainfall showed discrepancies of up to 75 mm depth (24-hour) 
for the rainfall event on August 18.  Similar results were evident for all three locations. At MMPS-
036 location, WRF simulated rainfall for two small events on August 8th and 18th showed some 
differences. Table 3 shows the event-wise comparison for MMPS-036. In general, WRF 
underestimated all three events and the highest underestimation was 108 mm for the October 8th 
event. A similar characteristic was observed at site MMPS-0932 where the highest underestimation 
was observed for July 31st event (80 mm) and lowest was for the September event (25 mm). 
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Figure 4 Comparison of 24-hour rainfall between WRF and HRSD observations for the three sites in the study area. 
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Table 3 Comparison of WRF Rainfall with HRSD Observations for Three Rainfall Events 

Events 
WRF-

004 
MMPS-

004 
MMPS -

WRF 
WRF-
0.36 

MMPS-
0.36 

MMPS-
WRF 

WRF-
0932 

MMPS-
0932 

MMPS-
WRF 

July-28-31 162 119 -43 101 124 23 121 201 80 
Sep-18-21 206 195 -11 175 266 92 186 210 25 
Oct-5-10 194 283 90 174 282 108 180 214 34 

 

Figure 5 shows the cumulative rainfall distribution at the three sites considered in this study. The 
difference in cumulative rainfall between WRF and HRSD was different at all the three sites. The 
highest difference in cumulative rainfall (189 mm) was observed at MMPS-0932. Both the MMPS-
004 and MMPS-036 sites showed similar differences (79 mm and 88 mm respectively) in 
cumulative rainfall. Even though, at all the three sites, WRF showed similar rainfall distribution 
compared to HRSD observations, WRF underestimated rainfall. This was true with all 12 
validation sites over Virginia Beach. 
 

 
Figure 5 Comparison of cumulative rainfall between WRF and HRSD observations for selected three sites. 

 
2.4.2 Comparison of Rainfall Simulated by WRF and Gauge Observations 
Figure 6 compares the spatial distribution of rainfall simulated by WRF with STAGE IV 
observations. It is clear from Figure 6 that, for all the three selected high rainfall events, WRF was 
relatively dry compared to STAGE IV. Even though STAGE IV was assimilated to WRF through 
the WRFDA system, WRF was unable to produce the same intensity rainfall. A similar finding 
was reported by Lin, Ebtehaj et al. (2015). They used point –scale 4D-Var precipitation data 
assimilation to WRFDA to produce precipitation estimates. Their results showed significant 
underestimation of summer precipitation over the central US by WRF with a noticeable difference 
in spatial rainfall distribution. From Figure 6, while WRF showed a large difference (depth, mm) 
in the spatial distribution of high rainfall events (September and October), the model was effective 
in simulating similar spatial patterns to that of STAGE IV.  
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Figure 6 Comparison of event based cumulative rainfall between WRF and STAGE IV observations. 

 
2.4.3 Surface Runoff from WRF with Gauge Observed Rainfall 
As an extension to proposed research of producing high-resolution hourly rainfall maps, the study 
analyzed the surface runoff. WRF Hydro model was used to simulate the streamflow at 100 meters 
resolution. Since the WRF Hydro model needs to be reconfigured with additional data including, 
stream characteristics such as the depth and width, stream slope, groundwater table information, 
the model results are not included in this study. However, WRF-Noah LSM derived surface runoff 
was analyzed (at 4 km and 15-minute time step) for the study area. Figure 7 shows the comparison 
of observed rainfall with WRF-Noah LSM simulated surface runoff. The simulated runoff showed 
similar patterns of rainfall at all three sites considered. The highest runoff (2 mm at the 15 minute 
time-step) was simulated at the MMPS-004 site, which is close to Shore Drive. 
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Figure 7 HRSD rainfall observations with WRF-Noah derived surface runoff for three sites and the highest rainfall 
event (October 8th) 
	
2.5 Conclusions 
Overall, WRF simulated rainfall was within the range of uncertainty for a large scale model in 
capturing the rainfall events with data assimilation. The performance of WRF with data 
assimilation was similar to previous studies. The sources of bias in WRF rainfall estimates may be 
due to forecast error, error in the assimilated data, and bias in the initialization or boundary 
conditions. While the products generated from this model are useful to link with hydrologic, 
hydraulic models and therefore assessing the transportation network under flooding conditions, for 
the improved dynamical downscaling of convective precipitation, future research is needed to 
improve the predictability of extreme rainfall events by assimilating accurate radar precipitation 
and soil moisture data. 
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3 Hydrology 
Urban coastal flood events can be modeled using physically-based 1D (e.g. (Mark, Weesakul et 
al. 2004)) or 2D models (e.g. (Mignot, Paquier et al. 2006, Hunter, Bates et al. 2008)). However, 
the simplified representations of reality used in physically-based models can be a limitation given 
the combination of variables and their interactions and the complexity of the physical environment 
which can influence urban coastal flooding. Another approach in hydrology is data-driven 
modeling (Solomatine and Ostfeld 2008). These models do not only adjust certain parameters of a 
model, as is done in the calibration of a physically-based model, rather they map model inputs to 
outputs without attempting to model the governing physical processes to any degree. Thus, the 
relationship between the inputs and outputs is not assumed, as in physically-based models, but 
learned. No simplifying assumptions are made when using data-driven models. 
 
The recent increase in availability of earth observation data, coupled with advances in machine 
learning algorithms, have expanded the possibilities and use of data-driven modeling in hydrology. 
Machine learning algorithms have been used extensively in hydrology for applications such as 
predicting reservoir operations (Yang, Gao et al. 2016), soil mineral weathering (Povak, Hessburg 
et al. 2014), streamflow (Solomatine and Xue 2004, Wang, Chau et al. 2009, Yang, Asanjan et al. 
2017), groundwater potential (Naghibi, Moghaddam et al. 2017), and groundwater level (Sahoo, 
Russo et al. 2017). The use of data-driven and machine learning algorithms in flooding 
applications specifically include Tehrany, Pradhan et al. (2013), Wang, Lai et al. (2015), and Tien 
Bui, Pradhan et al. (2016) who predicted areas susceptible to flooding, Adamovic, Branger et al. 
(2016) who modeled flash flooding on a regional scale, and  who predicted stream flow for flood 
forecasting. 
 
Both physically-based models and data-driven models have strengths and weaknesses. With 
physically-based models, it is easy to determine if model results make physical sense. This is not 
often true of data-driven models. Because data-driven algorithms do not attempt to mimic physical 
relationships, they can produce results that do not make physical sense. Many of the models 
produced by data-driven techniques are considered black-box models meaning that there is no way 
to see how the algorithm arrives at the model or the results it produced. Related to this is that when 
black box models are used, custom guidelines or rules which make physical sense but are not 
evident in the model training data cannot be added to the model. This may be a drawback to 
decision makers who would like to incorporate custom rules into the model based on domain 
knowledge gained through experience. 
 
Given the complexity of modeling urban coastal flooding, the objective of the hydrology portion 
of this project was to use data-driven models to predict flooding of roadways in Virginia Beach 
given rainfall predictions and tide levels. Water table level and wind conditions were also used in 
the model training. This study used Random Forest, a popular machine learning algorithm. 
Different approaches have been used to model flooding in urban coastal settings such as Virginia 
Beach. Tidal records have been statistically analyzed from tide gauges in the United States to 
estimate the amount of time that coastal cities have experienced flooding in the past several 
decades and project flooding in the coming decades (Ezer and Atkinson 2014, Sweet and Park 
2014, Moftakhari, AghaKouchak et al. 2015, Ray and Foster 2016). Many physically-based 
models have been used to model urban coastal flooding (Bates, Dawson et al. 2005, Smith, Bates 
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et al. 2011, Gallien, Sanders et al. 2014). This is some of the first research to demonstrate the use 
of machine learning algorithms to model urban coastal flood occurrences.  
 
3.1 Background 
3.1.1 Study Area and Street Flooding Record 
Although the study area for this project is Virginia Beach, the street flooding model was developed 
using data only available from the adjacent city of Norfolk, Virginia. Often observational data 
from flooding events is a limiting factor in creating useful flood models (Smith, Bates et al. 2011). 
Because such data is often sparse, photographs of flooded locations and personal interviews have 
been used out of necessity in the calibration and verification of flood models (Smith, Bates et al. 
2011). Even satellite imagery has been used to estimate flooding extents (Ireland, Volpi et al. 
2015).  Norfolk city workers have kept a record of individual flooded street locations starting with 
Hurricane Nicole on 30 September 2010 up until the time of writing this report. In the past six 
years, many of these locations, seen in Figure 8, have been reported as flooded only one or two 
times but others have been reported as flooded up to 19 times.  
	

	
Figure 8 Street flooding, environmental sensing stations and airports in Norfolk, Virginia USA 
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3.1.2 Description of Model Input and Output Data 
The objective of the hydrology portion of the modeling is to predict the number of flood reports 
resulting from a given storm event based on the environmental conditions of that event. The 
environmental condition input data for our model consisted of rainfall, water table level, wind, and 
tide level observations. These were obtained from the Hampton Roads Sanitation District (HRSD) 
and the US National Oceanic and Atmospheric Administration (NOAA). Rainfall, water table 
elevation, and wind direction and wind speed data were obtained from HRSD. The rainfall 
observations from HRSD were on a 15-minute time scale, and the water table elevations and wind 
data were on a 2-minute time scale. From NOAA we obtained 6-minute water elevations and daily 
high and low tides recorded at the Sewells Point (NOAA 2017) and Money Point (NOAA 2017) 
tide gauges. Wind speed, wind gust, and wind direction data recorded at the Money Point station 
at 6-minute time intervals were used as well. Daily rainfall and wind data collected at two airports 
in the study area, Norfolk International Airport (NOAA 2017) and Norfolk Naval Air Station 
(NOAA 2017), were also obtained from NOAA. The rain gauge, water table, wind, and tide gauge 
stations and airports are shown in Figure 8. All of the raw data together consisted of more than 15 
million observations. To keep the time series data organized, a simplified version of the 
Consortium of Universities for the Advancement of Hydrologic Sciences Incorporated (CUAHSI) 
Observations Data Model (Horsburgh, Tarboton et al. 2009) was implemented in a sqlite database. 
 
The output data used in model training and evaluation was the number of flooded locations per 
storm event as reported by City of Norfolk workers. A total of 45 storm events (listed in Table 4) 
were reported to have caused flooding in the period of record with the number of reported floods 
per event ranging from 1 to 159 (Figure 9). Eight of the events were hurricanes, the rest were 
unnamed or given generic names by city workers.  
 

	
Figure 9 Summary plot of reported floods per event in Norfolk, VA Sep. 2010-Oct. 2016 
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Table 4. Events recorded to have caused flooding in Norfolk, VA Sep. 2010-Oct. 2016 
  Event Date                Event Name    Flood Reports  
 29 Sep 2015         Hurricane Joaquin  159 
 05 Oct 2016         Hurricane Matthew  111 
 27 Aug 2011           Hurricane Irene  110 
 28 Oct 2012           Hurricane Sandy  105 
 20 Sep 2016                   unnamed  101 
 30 Sep 2010          Hurricane Nicole  101 
 02 Sep 2016         Hurricane Hermine  40 
 10 Jul 2014             Thunderstorms  39 
 09 Oct 2013                Heavy Rain  36 
 16 May 2014                Heavy Rain  35 
 08 Sep 2014              Rainy Monday  31 
 20 Jan 2016    January Winter Weather  26 
 24 Jul 2014                   unnamed  18 
 24 Sep 2015                 Noreaster  16 
 19 Sep 2016                Heavy Rain  11 
 02 Mar 2015                   unnamed  10 
 11 Jul 2015              Thunderstorm  10 
 19 Jul 2016              Thunderstorm  9 
 25 Feb 2016                   unnamed  8 
 03 Jul 2014          Hurricane Arthur  8 
 31 Jul 2016              Thunderstorm  8 
 02 Jul 2015                   unnamed  7 
 15 Jan 2016                   unnamed  6 
 03 Jun 2016      Severe Weather - 6/5  6 
 04 Sep 2014              Thunderstorm  5 
 19 Jun 2014             Thunderstorms  5 
 01 Feb 2016                   unnamed  5 
 23 Nov 2014                   unnamed  4 
 13 Sep 2014            Saturday Storm  3 
 30 Dec 2015            Heavy Rainfall  3 
 09 Jul 2014             Thunderstorms  2 
 25 Jul 2016         Bernie (Training)  2 
 10 Jun 2016                   unnamed  2 
 29 Sep 2014                   unnamed  2 
 16 Dec 2010                      Snow  2 
 24 Feb 2016       February 24th Storm  1 
 17 Nov 2014                    Storm   1 
 30 Oct 2015                   unnamed  1 
 20 Jul 2016                   unnamed  1 
 17 Sep 2015                   unnamed  1 
 02 Sep 2015                   unnamed  1 
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 18 Aug 2014                   unnamed  1 
 24 Sep 2014                Heavy Rain  1 
 09 Jun 2014                   unnamed  1 

	
3.1.2.1 Random Forest 
Random forest, developed by (Breiman 2001), is an ensemble machine learning algorithm which 
aggregates a large number of classification or regression trees (CART) to make a prediction 
(Breiman, Friedman et al. 1984). In the training of a CART, rules based on the response variable 
are developed to divide observations until the resulting groups of predictions have an acceptably 
low amount of impurity. The CART's rules are a collection of linear divisions of the observation 
data which, together, create a non-linear decision surface which can be complex.  
 
One of the main problems of CARTs is that they are prone to overfitting to the training data and 
thus perform poorly when given unseen data (Murphy 2012). Random Forest is an approach that 
addresses this weakness. When an individual CART is trained in the Random Forest algorithm, a 
portion of the input records and predictor variables are randomly selected as input used in the 
training. This process is repeated for the number of CARTs specified by the modeler creating a 
group of CARTs, each trained on a randomly selected subset of the records and input variables. 
This group makes up Random Forest. When a prediction is made, each CART makes a prediction 
based on the rules developed in the training and the aggregate of their individual predictions 
becomes the overall prediction. The random selection of input records and variables in the training 
of the individual CARTs creates variety in the weak learners thus avoiding overfitting of the model 
to the training data. This is one of the major strengths of the Random Forest algorithm. 
 
Beyond the actual predictive capabilities of Random Forest, the algorithm can be used to 
understand feature importance. Because many CARTs are being produced with different sets of 
input variables, the Random Forest algorithm learns and records the relative importance of the 
input variables in predicting the output. This capability is especially attractive in the present case 
as one of the objectives of this study is to understand the relative importance of explanatory 
variables in predicting street flooding. 
 
3.2 Methods 
3.2.1 Input Data Pre-processing 
For the modeling, all of the raw input environmental data were aggregated to a daily time scale to 
match the time scale of the flood reports. The resulting dataset consisted of 2,171 records of daily 
average environmental conditions from September 2010 through October 2016. The aggregated 
environmental input variables for the model are shown in Table 5. Different approaches of 
aggregation were taken for the different measurements. Four derivatives of the raw HRSD 15-
minute rainfall data were included in the model as inputs: the daily cumulative rainfall, the 
maximum hourly rainfall, the maximum 15-minute rainfall, and the cumulative rainfall in the 
previous three days. The different derivatives of the 15-minute rainfall were included with the 
intent of accounting for different types of floods. For example, in a flash flood, a large amount of 
rain falls in a short amount of time. In such a case, the maximum 15-minute rainfall value, which 
would be high, would be a better predictor variable than the total daily rainfall, which could be 
low. 
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As with the 15-minute rainfall data, several tide-related variables were model inputs including 
daily high and low tides, daily average tide level, and tide levels at the time of maximum 15-minute 
and maximum hourly rainfall totals. In coastal cities, such as Norfolk, the timing of rainfall and 
the tide levels can have an effect on flooding. For example, if tide level is especially high when a 
large amount of rain falls, the stormwater infrastructure may be underwater and therefore not 
function properly causing more flooding than if the tide were low and the same amount of rain 
fell. To, in some measure, account for such interactions between tide and rainfall, the tide level at 
the time of the maximum 15-minute rainfall and the tide level at the time of the maximum hourly 
rainfall were included as model inputs.  
 

Table 5 Predictor Variable Names and Descriptions 

 
The values on the daily time scale were averaged across all the stations which recorded that 
variable. For example, the 'Daily cumulative rainfall' is the total daily rainfall averaged across all 
11 the rain gauges. This spatial averaging was done for two reasons. First, this was a way of making 
the model applicable more generally. If the values were not averaged across the stations, when 
using the model, an input would be needed for every station. In this case, for example, to make a 
prediction a daily rainfall value would be needed for all 11 rainfall stations. This could be a 
problem if all 11 stations were not functioning. Second, by averaging the variables across stations, 
the importance of the environmental variables can be more clearly learned. For some of the stations 

Feature Name   Units   
 Source 
Organization  Abbreviation 

Daily cumulative rainfall   Inches   HRSD, Airports   RD 
Maximum hourly rainfall   Inches   HRSD   RHRMX 
Maximum 15-minute rainfall   Inches   HRSD   R15MX 
Cumulative rainfall in previous three days   Inches   HRSD   R3D 

Average water table elevation  
 Feet above 
NAVD88   HRSD   GW_AV 

Average tide level   Feet above MSL   NOAA   TD_AV 
Tide level at time of maximum 15-minute 
rainfall   Feet above MSL   NOAA   TD_R15 
Tide level at time of maximum hourly 
rainfall   Feet above MSL   NOAA   TD_RHR 
High tide   Feet above MSL    NOAA   HT 
Higher high tide   Feet above MSL    NOAA   HHT 
Low tide   Feet above MSL    NOAA   LT 
Lower low tide   Feet above MSL    NOAA   LLT 

Average daily wind speed   Miles per hour  
 Airports, NOAA, 
HRSD   AWND 

Average daily wind direction   Degrees  
  Airports, NOAA, 
HRSD   AWDR 

Average wind speed over 6-minutes   Miles per hour  
 Airports, NOAA, 
HRSD   WSF6 

Average wind direction over 6-minutes   Degrees  
  Airports, NOAA, 
HRSD   WDF6 

Average maximum 2-minute wind gust over 
6-minutes   Miles per hour  

  Airports, NOAA, 
HRSD   WGF6 

Average wind speed over 2-minutes   Miles per hour  
 Airports, NOAA, 
HRSD   WSF2 

Average wind direction over 2-minutes   Degrees  
  Airports, NOAA, 
HRSD   WDF2 
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there is a considerable amount of missing data over the six years of the study period. If the variables 
were not averaged across measuring stations, it would appear that the stations that had less missing 
data were more important which would make it more difficult to understand the importance of the 
actual environmental variables compared to the consistency of measurements at an individual 
station.  
 
To reduce noise in the data, daily environmental conditions which, under reasonable assumptions, 
would not cause flooding were not used in the modeling procedure. The assumption on which this 
decision was made was based on total daily rainfall. Of the 45 events for which flooding was 
reported, 42 had an average daily rainfall total of 0.01 inches or greater. For two of the events with 
less than 0.01 inches of rainfall, only one flooded location was reported. Two flooded locations 
were reported for the third. Given that very minor flooding was reported for these three events, 
only daily records with an average of at least 0.01 inches of rainfall were considered in the model 
training and evaluation. This reduced the number of total daily records used to train and evaluate 
the model from 2171 to 814.  
 
The dataset of daily environmental conditions for storm events from September 2010 to October 
2016 and the number of reported flood locations for each event were randomly divided into a 
training set (70%) and an evaluation set (30%). This included the 42 storm events for which 
flooding was reported and the 772 events which for which no flooding was reported. The 
distribution of the number of reported floods (the output variable) in both the training and 
evaluation datasets was similar to the distribution of the number of reported floods of the entire 
data set.  
	
3.2.2 Model Training and Evaluation 
The R programming language (version 3.3.3) was used to train and evaluate the Random Forest 
model. The 'randomForest' package (version 4.6.12) was used for the Random Forest model. The 
model was trained using only the training data. For the Random Forest, training involved training 
500 regression trees, each optimized for a randomly selected two-thirds of the training records and 
a maximum of six predictor variables.  
 
Once trained, the evaluation dataset of input environmental variables which was kept back in the 
model training, was used as input for the model. Applying the model to the evaluation data 
produced a predicted number of reported floods for each of input values. The predicted numbers 
of reported floods were compared with the known number of reported floods. Root mean squared 
error (RMSE) and mean absolute error (MAE) were the two metrics used to evaluate the model. 
Given that our dataset is somewhat small, to account for potential bias in the division of the data 
into training and evaluation sets, the division was made, the model was run, and the results were 
recorded 100 times independently. 
 
3.2.3 Applying model to Virginia Beach 
Once the model was trained with the input and output data from Norfolk, it was applied to the 
Virginia Beach area and road network. Two major differences were made to the modeling 
procedure to apply the model to Virginia Beach. First the model was adapted so that the model 
output was in terms of the portion of roadways predicted to flood instead of the number of 
roadways predicted to flood, and second, input rainfall data was changed to be output from the 
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WRF model described above instead of the rainfall observations. To translate to a number of flood 
locations in Virginia Beach that would flood under a set of environmental input conditions, the 
number of total possible flood locations in both Norfolk and Virginia Beach was needed. Most of 
the flood reports in the record made in Norfolk were at roadway intersections, therefore, only 
intersections were considered as possible flood locations. Using the ArcGIS Intersect tool, the total 
number of roadway intersections was found in both cities. Many of the intersections output from 
the Intersect tool were located very close to each other, some at the exact same geographic location. 
Because of this, intersection near others were disregarded until every intersection was at least 100 
feet from the next. Additionally, since workers could not report on floods inside military bases, 
the total number of intersections in Norfolk used to calculate the percentage of intersections 
flooded did not include intersections on the military bases.  
 
To incorporate rainfall predictions, model output from WRF (described above) for the Virginia 
Beach was used as model input for the Random Forest model. Since average daily rainfall over 
the study area was one of the inputs to the Random Forest model, the predicted rainfall from WRF 
was spatially averaged over the study area. To have predictions on a 15-minute scale, a 24-hour 
rolling sum of the rainfall was performed. The maximum 15-minute and hourly rainfall values in 
a rolling 24-hour time period was also input for the Random Forest model. Tide values made up 
the other inputs for the Random Forest model. The tide values used were observed values since 
tidal prediction was not in the scope of this project.  
 
The output from the adapted Random Forest model was a ratio of flooded intersections. Given the 
total number of intersections in Virginia Beach, the number of intersections predicted to flood was 
found. Predicting exactly which roadways will flood is difficult and since little data to explore this 
question was available, as a first approach to this question, the basic assumption was made that an 
intersection with a lower elevation will flood before an intersection with a higher elevation. 
Therefore, all of the intersections in Virginia Beach were ranked by elevation and the intersections 
predicted to flood, given 24-hour rainfall predictions and tide observations, were the number of 
lowest intersections predicted by the Random Forest model. Unfortunately, since no street flooding 
observations were available from Virginia Beach, it was not possible to verify the assumptions 
made or the application of the model to Virginia Beach. 
 
3.3 Results and Discussion 
3.3.1 Model Results 
The RMSE, MAE, and standard deviations of training and evaluation predictions from the Random 
Forest model are reported in Table 6. The RMSE was significantly higher in the evaluation phase 
compared to the training phase both when considering all of the days and when considering only 
days where floods were recorded. In both cases, the evaluation RMSE was about two times the 
training RMSE, suggesting that the model was overfit to the training data. Figure 10 shows the 
predicted number of flood reports made by the Random Forest model in the training and evaluation 
phases.  
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Table 6 Summary of Model Training and Evaluation Results 

           RMSE   MAE   SD  
          Training   Evaluation  Training   Evaluation  Training   Evaluation  
All days  2.31 5.06 0.41 0.95 2.47 4.58 

Non-zero flood days  9.79 21.41 5.38 12.29 2.55 4.7 
	

	
Figure 10 Random Forest model results. Bars represent +- one standard deviation. 

3.3.2 False Negative and False Positive Predictions 
Of particular interest to a decision maker when evaluating a model are false positive and false 
negative predictions. Statistics summarizing false negative and false positive predictions in the 
model evaluation phase are given in Table 7. Since predictions were on a continuous scale and true 
flood reports were integers, the predictions were rounded to the nearest integer when calculating 
the false negative and false positive rates. For example, a prediction was considered false positive 
when the number of flood predictions was at least 0.5 (which would round to 1) and the true 
number of flood reports was zero.  
 
The false positive rate for the model was 8.92%, however, most of the false positive predictions 
were less than 1.5 flood reports, which would round down to one. The maximum false positive 
prediction was 36. The model had much higher false negative rate, 31.50%. Importantly, the model 
did not have any false negative predictions when the true number of reported floods was high. The 
maximum number of true flood reports when a false negative prediction was nine. 
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Table 7 False Positive and False Negative Statistics for Random Forest Model 

   False Positives   False Negatives  
rate (%)  8.92 31.5 
count     2059 384 
25%       0.75 1 
50%       1.45 2 
75%       3.85 5 
max       36.04 9 
mean      3.33 2.96 
std       4.49 2.47 

		
3.3.3 Variable Importance 
Figure 11 shows the importance of each of the variables as calculated from model in terms of the 
percent increase in mean squared error (MSE) when each of the variables is permuted individually. 
The total daily rainfall value was by far the most important of the variables. This was much more 
important than any of the other variables derived from the raw rainfall data, including the 
maximum hourly and maximum 15-minute rainfall values, suggesting that, in this record, large 
rainfall volumes caused more flooding than high rainfall intensities. The next three variables in 
terms of prediction importance were related to tide: low tide, higher high tide, and lower low tide. 
The height of the water table did not add appreciable predictive power to the model. This suggests 
that the water table did not impact flooding in a significant way and that, for the floods reported in 
this record, groundwater emergence, which is expected to cause flooding in coastal environments 
in the future (Hoover, Odigie et al. 2016), was not a factor.  
 
The variable importance results shown in Figure 11 are supported by the raw data shown in Figure 
12. The number of flood reports has clear positive relationship with the daily rainfall. The same is 
true for low tide and higher high tide. The relationship is much less clear for the maximum hourly 
rainfall and the maximum 15-minute rainfall, but according to Figure 11, the Random Forest model 
was still able to glean some meaningful information from the data. Interestingly, the average tide, 
visually, has a much clearer relationship with the number of flood reports compared to the 
maximum hourly, and maximum 15-minute rainfall values but is considered less important by the 
Random Forest algorithm. This is likely because most of the information provided by the average 
tide level data is already given to the model, in a more useful form from the low tide, higher high 
tide, and lower low tide variables. 
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Figure 11 Importance of predictor variables 

	
Figure 12 Flood reports plotted against top nine predictor variables 
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3.3.4 Potential Explanations for Model Shortcomings 
A likely reason for the deficiency in the model is the limited amount of output data used to train 
the model. Although reported floods have increased over the past six years, as seen in Figure 9, 
they are still relatively rare events. Flood reports were made on only 42, or just over 5%, of the 
daily records used in model. In addition, the number of flooding reports were distributed very 
unequally among the 42 days on which flood reports were made. More than 65% of the total flood 
reports were recorded on just six days (0.6% of the total days modeled). The rarity of days with 
any flood reports, and especially a large number of flood reports, makes it difficult for the model 
training. Solomatine and Xue (2004) faced similar problems in training their machine learning 
model to accurately predict high peak flows which occurred rarely in their dataset.  
 
The results also suggest that, compared to storm events with large volumes of rainfall which caused 
flooding, other types of storm events were not as well modeled by Random Forest. Figure 13 shows 
the percent error of the Random Forest evaluation predictions for the 11 events with the top 10 
number of reported floods (two events had 101 flood reports: Hurricane Nicole and an unnamed 
event occurring on 20 September 2016). Two unnamed events, heavy rain which occurred on 16 
May 2014 (35 reported flood locations) and thunderstorms which occurred on 10 July 2014 (35 
reported flood locations) have average percent error magnitudes larger than the rest. Both of these 
events had much lower daily rainfall and tide levels, the most important variables of the model 
(see Figure 11), but higher maximum hourly rainfall and relatively high maximum 15-minute 
rainfall compared to the other high flooding events. Given this, it is likely that the events caused 
flash floods, which these results suggest was a type of flooding not well represented in the training 
dataset. It is expected that a machine learning model would better predict such flood events with a 
larger, more complete dataset, that contained more instances of such flooding events. Additionally, 
with more training data, the model could be trained on specific subsets of flood events to tailor the 
model to a flood event with specific characteristics (e.g. flash floods).   
	

	
Figure 13 Top 10 flooding event percent error from model evaluation 

Besides the limited number of flooding events with which to train the model, the bias present in 
the output data could have hampered model performance. There is an unknown amount of 
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subjectivity and bias in the data because the flooded locations were reported by individuals. Since 
the model was trained on data reported by individuals, one individual may influence the trained 
model disproportionally. Figure 14 shows the total number of flood reports made by each 
individual reporter and the number of flood events for which each reporter recorded at least one 
flooded location during the period of record. The highest number of reports made by one reporter 
was 158, 14% of the total reports from all 71 reporters. Therefore, the model in its training, are 
significantly influenced by this one reporter and can inherit, to some extent, his/her biases. 
 
One potential bias is in the under- or over-representation of different roadway types in the flooding 
record. Figure 15 shows the percentage of roadway length per VDOT roadway class in Norfolk 
and the percent of each roadway class at which flood reports were (Table 8 gives the descriptions 
for each of the classes). From the figure, it is seen that although public local streets (class 6) 
account for the majority of the roadway length of the city (close to 60%), only 40% of the flooded 
streets reported were public local streets. Conversely, principal arterials (class 3) accounted for 
nearly 30% of the flooded street reports even though the streets make up less than 10% of Norfolk's 
total roadway length. This suggests that a flooded street less traveled and, therefore, less important 
to the overall connectivity of the city's street network may have flooded but may not have been 
reported within the record with the same frequency as the more major roads.  
 
Another example of bias may occur when unequal attention in reporting is given to certain 
geographic areas of the city or to certain storm events. One example of this bias is seen in the 
difference in reported floods between Hurricane Hermine and Hurricane Matthew which occurred 
only one month apart. For Hurricane Hermine, 25 flood reports, more than half of the total of 40 
flood reports, came from one area in downtown Norfolk. In contrast, for Hurricane Matthew, 
which produced more than three times as much daily rainfall on average than Hurricane Hermine 
(10.4 inches compared to 3.3 inches) and was at least comparable in terms of tide, water table 
height, and wind conditions, only seven flood reports were made from the same area. It is unlikely 
that the actual flooding caused by Hurricane Matthew, a much larger storm, was in fact a quarter 
in severity, but more likely that there were significant differences in individual reporting between 
the two events. 
 
Given the uncertainties involved in the original model, further introduced when applying it to the 
Virginia Beach area, and the disconnection of the output to physical characteristics (e.g., elevation) 
of the Virginia Beach road network, the research team used elevation based hypothetical road 
flooding scenarios in the transportation chapter. With more spatially and temporally detailed data 
collected regarding street flooding, it is anticipated that the model shown here could be used with 
the transportation models in the future. 
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Figure 14 Number of total events made and events reported per reporter 

	
Figure 15 Percentage of total roadway length and percentage of reported floods per VDOT roadway class in 

Norfolk, VA 
		

Table 8 VDOT Roadway Class Codes and Descriptions 

VDOT Road Class Code                          Description  
1                          Interstate  
2   Tunnel Roads and other VDOT owned  
3                 Principal Arterials  
4                     Minor Arterials  
5                          Collectors  
6               Local Streets- Public  
7              Local Streets- Private  
8                       Miscellaneous  
9                          Base Roads  

10                       Public Alleys  
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4 Transportation 
The transportation portion of this study focused on providing route assistance to the vehicles that 
are affected by nuisance flooding which requires road closures but not neighborhood evacuation. 
Depending on their origin, and intended destination and path, some vehicles are affected while 
others can proceed with their trip as planned. The affected vehicles have an origin, destination 
and/or intermediate node(s) on soon-to-be flooded or closed links. In these cases, in-vehicle route 
guidance systems can assist the users in leaving the danger zone and selecting the best alternative 
path. In addition, in-vehicle route guidance systems could communicate warning messages to 
unaffected vehicles alerting them about the areas to avoid. 
 
The centralized dynamic route guidance framework relies on the connected vehicle environment 
and assumes that real-time information and accurate traffic measurements are available and can be 
used to determine the actual link travel times, flooding progress, and delays. These link 
performance measures are assumed to be broadcasted from the traffic management center to the 
vehicles in which in-vehicle guidance systems are integrated. To compute a set of optimal 
alternative paths for the vehicles that need to be rerouted, the time-dependent hyperstar routing 
algorithm (Bell, Trozzi et al. 2012) is adopted. The vehicles on soon-to-be flooded links are first 
directed out of the danger zone and then provided with a set of alternative paths to resume their 
trip to their original destination. The vehicles that were heading towards a destination on a soon-
to-be flooded or closed link are assigned to a new safe destination. A new set of alternative optimal 
paths are generated for vehicles with one or more soon-to-be flooded and/or closed link(s) in the 
path. Since the hyperstar routing algorithm computes a set of optimal paths between an 
origin/destination pair, the selection of the actual path depends entirely on the user’s preference. 
On the other hand, unaffected vehicles present in the study area, receive a warning that includes 
the locations of all the roads and intersections to be avoided. Due to the connected vehicles’ 
capabilities, the traffic measurements are assumed to be continuously collected, allowing the 
regular update of link performance measures. Furthermore, communication with a traffic 
management center (TMC) is assumed to exist to close roads and prevent entry to the soon-to-be 
flooded links only for safety as needed.  
	
4.1 Routing Algorithm Background 
Dijkstra’s (1959) algorithm computes a shortest path tree between an origin node and all 
destination nodes in a directed graph with non-negative weighted edges. A wide variety of 
techniques focusing on speeding-up Dijkstra’s algorithm have emerged. They mainly consisted of 
preprocessing data in the graph and then using the information to reduce the computational time 
while outputting the shortest path tree. Based on their review, Wagner and Willhalm (2007) 
asserted that these speed-up techniques consisted of limiting the search space of the algorithm and 
they described two classical speed up techniques: the bidirectional search and the goal-directed 
search or Astar. The bidirectional search (Luby and Ragde 1989) was based on alternating between 
two unidirectional searches: one forward search from the origin node in the graph and one reverse 
search from the destination node in the reverse graph. When one node was transferred to the closed 
lists of both searches, the algorithm terminated and the shortest path between the origin and 
destination nodes was computed as the sum of the distance between the origin and the common 
node obtained from the normal search and the distance between the common node and the 
destination node obtained from the reverse search. On the other hand, the goal-directed search of 
Astar,  which was derived from the heuristic approach developed by Hart et al. (1968), consisted 
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of adjusting the way the nodes were labeled thus affecting the order in which the nodes in the open 
list were expanded. In the unmodified Dijkstra’s algorithm, the node label reflected the distance 
from the origin to the node along the tree. However, the Astar speed-up technique added to each 
node a potential or heuristic that depended on the desired destination node. The adequacy and 
accuracy of node potentials efficiently guide the search towards the destination node. The 
unmodified Dijkstra’s algorithm returns the shortest path from one node to all other nodes in a 
graph, but, it can also be terminated when the desired destination is reached. The bidirectional 
search and the goal-directed search techniques focused on speeding-up the search for the shortest 
path between an origin and one destination node by efficiently reducing the search space thus 
guiding the algorithm’s search towards the destination node.  
	

Bell (2009) developed a routing algorithm called Hyperstar that generated a reliable path set, rather 
than a single shortest path. It was a reinterpretation of the Spiess and Florian (1989) algorithm 
which was designed for transit assignment. The latter determines, for each link, a service frequency 
that was equal to the inverse of the waiting time on the link. Next, it finds a hyperpath between an 
origin and a destination (set of possible optimal paths) by minimizing the expected travel time to 
the destination. Bell adapted the Spiess and Florian algorithm to vehicle routing by considering 
the service frequency of a link equal to the inverse of the maximum delay that can be experienced 
on a link. For instance, a link with a high maximum delay has a low service frequency and is hence 
less reliable. Since the hyperstar algorithm was designed for vehicle routing systems, it 
incorporated the Astar algorithm to speed up the path generation.  Ma et al. (2013) introduced the 
Dijkstra-Hyperstar algorithm which incorporated two techniques to speed-up the Hyperstar 
algorithm while maintaining the same generated hyperpath. It used Dijkstra’s algorithm to 
determine the node potentials and adopted a node directed search to limit the number of links being 
evaluated. 
	
Another method that considered the dynamic aspect of networks was introduced by Chabini and 
Lan (2002) who assigned a time-dependent cost to each link and computed a single path is 
computed between a pair of nodes.  As an extension to the Chabini and Lan (2002) work, Bell et 
al. (2012) revisited the hyperstar algorithm discussed above and added a dynamic and more 
realistic aspect. An undelayed travel time along with a maximum delay were assigned to each link 
and were both dependent on the time of arrival at the link. The algorithm reversed the original 
hyperstar algorithm in which the travel time of a link depended on the time of departure from a 
link. The time-dependent hyperstar algorithm builds the hyperpath from the origin to the 
destination by minimizing the expected arrival at the destination and all intermediate nodes.  
 
In this study, we implemented the time-dependent version of the hyperstar algorithm (Bell, Trozzi 
et al. 2012) to provide a set of alternative paths to the vehicles affected by the flooding; thus, 
enhancing their route selection while maintaining their preferences. During a flood event, the state 
of the system (i.e. road closures) as well as the link performance measures vary with time. For 
instance, a vehicle can travel a link that will become closed and unavailable for other vehicles in 
the future. So the time-dependent hyperstar algorithm was used because it can adapt to the dynamic 
aspects of the flood event and the transportation system itself by assigning each link a time-
dependent travel time and maximum delay. 
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4.2 Framework 
This framework relies on the connected vehicles environment in which communications among 
equipped vehicles and between equipped vehicles and infrastructure are enabled. Real-time traffic 
information from these vehicles are assumed to be collected and processed to provide reliable 
performance measures and for traffic optimization purposes.  
 
This framework leverages the benefits of the connected vehicle environment by first collecting the 
information about the vehicles (origin, destination and path) detected in the system and about the 
links and intersections in the network (travel time, delay, open/closed status). Since a set of roads 
in the transportation network will be flooded and subsequently closed, vehicles which were located 
on one of these links and vehicles which intended to travel through one will require assistance in 
determining their new route to reach their destination safely. This study focuses on routing the 
affected vehicles just prior to and during a flood. The connected vehicles also allow the broadcast 
of warning messages to the unaffected vehicles.  
 
The framework acts as a centralized dynamic route guidance system during flood emergency 
situations. A Traffic Management Center (TMC) is assumed to gather all traffic information from 
the connected vehicles. The TMC estimates and regularly updates the current link performance 
measures and the flood impacts at the street-level. In-vehicle systems generate the routing 
guidance after the receipt of all required information from the TMC. 
 
The framework does not require the generation of optimal emergency evacuation strategies prior 
the emergency event. The objective here is to develop a framework that adapts to flood scenarios 
with different flood timelines and locations.  
 
The vehicle routing algorithm used in this framework is the time-dependent hyperstar algorithm 
introduced by Bell et al. (2012), which computes a set of optimal paths, called a hyperpath, 
between an origin and a destination. For faster hyperpath computation, the algorithm requires the 
generation of node potentials to direct the search towards the destination. In this study, a node 
potential refers to the remaining undelayed travel time from the node to the destination and is 
calculated using the Partitioning shortest path algorithm (Glover, Klingman et al. 1985). The 
hyperstar algorithm is a theoretical routing algorithm that has been previously applied on a sample 
network for demonstration purposes (Bell, Trozzi et al. 2012). In this study, the hyperstar is tested 
on more realistic transportation networks that account for the wait time experienced at signalized 
intersections.   
 
The following assumptions were made when developing the framework: 

• If a vehicle can travel, it will travel. 
• If a link is flooded, its start and end nodes can still be travelled.  
• A link is either open or closed (no partial closure).  
• Only affected vehicles are rerouted. 
• Unaffected vehicles receive a warning message that includes the areas to avoid. 
• Vehicles with origins on closed links receive a warning message to wait at the origin. 
• A traffic management center is available to process the real-time information obtained from 

the connected vehicles and to estimate the current link travel times and delays as well as 
road closures due to the flood. 
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• In-vehicle systems generate the route guidance (set of alternative paths) based on the link 
performance measures and flood information broadcasted from the traffic management 
center. 

• Vehicles with destinations on soon-to-be flooded or closed links are assigned to new safe 
destinations where they can wait.  

• Vehicles that cannot travel to any safe destination can wait at their origins. 
 
4.2.1 Terminology	
The first set of terms categorizes nodes near the flooding hazard and is illustrated in Figure 16.  

• The flood boundary includes the downstream nodes of the soon-to-be flooded links and 
closed links. These nodes can be connected to a safe node in Buffer 1 by a safe link. 

• Buffer 1 includes the safe (unflooded) nodes that are connected to one node in the flood 
boundary by a safe link. 

• Buffer 2 includes the safe (unflooded) nodes that are connected to one node in Buffer 1 
by a safe link and are farther away from the hazard area than nodes in Buffer 1. 
	

	
Figure 16 Flood boundary and buffers 

The next set of terms pertains to the timeline of events for a link that experiences flooding. These 
are illustrated in Figure 17. Not all links in the network experience flooding; some links are 
considered safe for the entire time. Only links that flood require the below designations. 
 

	
Figure 17 Link timeline 
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• Flood interval: This is the time interval during which the link cannot be travelled and is 
closed due to water on the road. 

• Empty link interval: This interval acts as a safety margin during which the link is closed. 
No vehicles should be on the link during this time. This variable would be determined by 
policy makers or a transportation agency and can vary with the link characteristics. 
However, in this study, it is considered fixed for all links. 

• Minimum clearance (and additional clearance) interval: This is the time interval during 
which the link is considered as soon-to-be flooded and only vehicles that are in the soon-
to-be flooded zone can travel (enter and/or exit) these links. Once these vehicles reach a 
safe zone (i.e., exit the soon to be flooded zone), they are denied re-entry. The link 
minimum clearance interval (from time “t2” to time “t3”) depends on the link 
characteristics, the traffic and weather conditions. The additional clearance interval (from 
time “t1” to time “t2”) is an interval whose duration is determined by policy makers or a 
transportation agency based on how safe and sufficient the minimum clearance interval is.    

• Safe interval: This is a time interval during which the link is not threatened by flood water, 
is considered safe, and can be travelled by any vehicle. 

• Closed link: A link cannot be traversed when it is closed. A link that experiences flooding 
is closed at time t3 (Figure 17) and thereafter. 

• Soon-to-be flooded link: A link that will be flooded in the future is considered soon-to-be 
flooded before it actually floods. In Figure 17, the soon-to-be-flooded designation is assigned 
to the relevant links between time t1 (>= t1) and t3 (<t3). 

• Link time of closing: The time of closing is the time after which the entry to the link is 
prevented and it varies from an individual vehicle’s perspective depending on the vehicle’s 
initial position. For instance, vehicles with origins on soon-to-be flooded links are allowed 
to travel along soon-to-be (but not yet) flooded links to reach a safe stop, while vehicles 
originally on safe links are prohibited from entering soon-to-be flooded links. Thus, for 
vehicles outside the soon-to-be flooded and/or closed area, the time of closing of a soon-
to-be flooded link is at time t1 in Figure 17, while time of closing of the same link is at time 
t3 for vehicles that are located in the soon-to-be flooded area.  

 
To sum up, at time t1, entry to the soon-to-be flooded zone is prohibited and only vehicles 
originally in this area are allowed to travel within it in order to exit and reach a safe stop.  Thus, at 
time t1, barriers that block the entry points to the flooded zones should be placed. At time t3, no 
vehicle is allowed to travel on the link. Therefore, barriers that close the entry and exit points of 
all flooded links should be positioned. 

 
Note that a link is considered soon-to-be flooded during the minimum clearance and additional 
clearance interval. Vehicles initially located outside the flooded zone are not allowed to travel 
along soon-to-be flooded and closed links, and the time of closing of these links is considered at 
time t1. Vehicles that are originally inside the flooded zone can travel along soon-to-be flooded 
links, and the links’ time of closing, for these vehicles, is at time t3.  
	
Also referring to Figure 17, an affected vehicle is a vehicle with an initial or regular path that is 
directly impacted by the flood or safety measures. The affected vehicle meets at least one of the 
following criteria: 



32 
	

• Has an origin on a soon-to-be flooded link (t1 <= departure time < t3) or on a closed link 
(departure time >= t3) 

• Is heading to a destination on soon-to-be flooded or closed link (expected time at 
destination >= t1) 

• Intends to travel (based on the initial or regular path) through one or more intermediate 
soon-to-be flooded or closed link (expected time of arrival at the link >= t1). 
 

The hyperstar algorithm as originally developed, uses the terms undelayed travel time  and 
maximum delay (Bell 2009, Bell, Trozzi et al. 2012). In the context of this study, these terms are 
considered as follows: 

• Undelayed travel time: This is the link travel time that varies with the regular time of traffic 
conditions. Peak travel times are higher than off-peak but still considered undelayed in the 
absence of adverse weather or incidents. 

• Maximum delay: This is the maximum delay incurred on a link due to the flood and is set 
to a very large number (infinite) to represent the closed condition (i.e. it is infinite after the 
link time of closing).  
 

4.2.2 Input	data	for	the	framework	
The input data required for the framework includes: 

• Undelayed link travel times: This information is required for all links in the network and 
is assumed to be available from a traffic management center either from current technology 
(e.g., sensors/detectors) or from connected vehicles.  

• Maximum delay: This information is required for all links in the network. This link 
performance measure can be obtained from sensors, detectors or using the connected 
vehicles as long as the link can still be travelled. The maximum delay is infinite when entry 
to the link is prohibited.  

• Flood input data: For research purposes, a list of links that will flood with their expected 
time of flooding is needed. In future deployment, similar information could be obtained 
from weather and flood forecast systems, as suggested in Sections 2 and 3. 

In this research, outputs from VISSIM simulations along with generated flooding scenarios 
constitute the input data required for the numerical implementation of the framework. 
	
4.2.2.1 Undelayed travel time 
As mentioned above, the undelayed travel times could be collected from sensors. However, for the 
sample application in this study, these times were estimated based on simulations. Since the 
method used to generate the undelayed times were specific to this study but not the framework, it 
is discussed after the framework.  
	
4.2.2.2 Maximum delay 
For research purposes, the maximum delay experienced on a link while travel was still permitted 
was estimated based on information from the Federal Highway Administration. According to the 
Federal Highway Administration (2017),  a heavy rain event leads to an estimated free-flow speed 
(FFS) reduction between 6% and 17%. This was reflected by an increase in the free-flow time 
(FFT) between 6.5% and 20.5% for the unflooded links in this study. Thus, if the vehicle was 
expected to enter the link before the link closing time, the maximum delay experienced on the link 
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was a duration between 6.5% and 20.5% of the FFT. However, if the time of entry was after the 
link closing time, the maximum delay was infinite and as a result the entry to the link was indirectly 
prevented.  
	
4.2.2.3 Flood data 
Information about the flood in terms of location and timeline in the transportation network are 
crucial inputs to this framework. We assumed that these data could be obtained from future weather 
and flood forecast systems. For this study, hypothetical flood information was generated. The 
information included the links and intersections that flood along with the time of flooding.  
	
4.2.3 Framework description 
This framework was developed to be implemented in a connected vehicles environment. As shown 
in the flowchart in Figure 18, once a vehicle is detected in the transportation network, its trip is 
evaluated based on the network’s state to determine whether the vehicle is affected by the flood or 
not. The remaining trip of an en-route vehicle is evaluated and its origin is considered its position 
at the time the framework is activated. However, the complete trips of new vehicles in the system 
are evaluated. If the vehicle is affected but is still able to leave its origin, it receives routing 
assistance to reach its final destination safely and as soon as possible. If the vehicle is affected but 
cannot reach a safe destination, it receives a warning stating that it should wait at the origin. If the 
vehicle is unaffected, a warning notifies the vehicle about the areas to avoid. The actual link data 
are assumed to be estimated, stored and regularly updated in the TMC’s database through the 
broadcast of real-time information from the connected vehicles as well as updates from weather 
and hydrologic models.  
 
Vehicles in the system are evaluated independently. To determine if the vehicle is affected or not, 
along with the corresponding route guidance or warning to be displayed, the in-vehicle route 
guidance system retrieves the current link data from the traffic management center.  

	
Figure 18 Framework flowchart (future connected vehicle environment) 

In this research, and to demonstrate the implementation of this framework with simulated vehicle 
data, another flowchart has been adopted and is illustrated in Figure 19. Instead of assuming that 
the link data (i.e. travel time and information about flooding) are provided from the TMC, link 
performance measures were obtained from microscopic simulations of a transportation network 
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modeled in VISSIM and information about the flood was generated for hypothetical scenarios. All 
vehicles recorded during a one-hour simulation in VISSIM are evaluated all at once based on their 
complete trips. Then, the vehicles are considered successively and depending whether they are 
affected or not, a vehicle either receives a warning or route guidance. 

 
In the remainder of this chapter, the four major parts of the framework are discussed. First is the 
“buffer generation” part which explains how the safe node buffers around the flooded links are 
defined. These node buffers act as first safe stops or final destinations to some groups of vehicles. 
Second is the “vehicle analysis” in which the vehicles detected in the system are evaluated and 
grouped. The third part introduces the “routing” procedure which consists of executing the 
hyperstar routing algorithm and the partitioning shortest path algorithm whenever route guidance 
between two nodes in the network is needed. In the fourth part called “process”, the tasks specific 
to each group of vehicles are discussed.  
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Figure 19 Framework flowchart (research) 
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4.2.3.1 Buffer generation 
As shown in Figure 20, this step requires as inputs the network connectivity (link ID, upstream 
node, and downstream node) and the lists of links that are soon-to-be flooded or closed. In future 
connected vehicle environments, the node buffers would be updated every time the state of the 
system changes. In other words, the input list of the links is regularly updated so that the current 
node buffers are defined. 

	

	
Figure 20 Input/ Output data of buffer generation step 

This step was coded using the Java computer programming language and the corresponding 
pseudocode is shown in Appendix A. Note that in the future connected vehicle environment, the 
node buffers can be identified by computing the buffers at specific distances from the flooded 
locations.  
 
4.2.3.2 Vehicle analysis 
Once the links that are soon-to-be flooded or closed are defined, all vehicles in the area of interest 
are evaluated to identify the affected and unaffected vehicles. Note that the buffer generation and 
the vehicle analysis steps are independent and can be executed in parallel. 

 
As defined above, an affected vehicle is a vehicle with an origin, destination or intermediate link 
that is soon-to-be flooded or closed within the duration of the trip. A vehicle that does not satisfy 
any of these conditions is not considered affected by the flood. In other words, its origin, 
destination and path are not expected to be soon-to-be flooded or closed during the trip. 

 
Regarding the affected vehicles, if they can still leave their origins (origin not on a closed link at 
the departure time) and if at least one path can be found between their position and a safe 
destination, they receive route assistance that comprises a set of alternative paths from which the 
user selects his/her preferred one. On the other hand, affected vehicles that cannot travel only 
receive a warning instructing them to wait at the origin. All unaffected vehicles only receive a 
warning that discloses the areas to avoid in case of deviation from the planned path.  
 
The vehicle data obtained from the one-hour microscopic traffic simulation with VISSIM, 
includes, for each vehicle, the list of links in the path and the time of entry to each link. In this 
step, we extract from the raw data obtained from the VISSIM simulation, the origin, destination 
and trip start time for each vehicle. In addition, we classify the vehicles into six groups based on 
the flooded links and corresponding closing time, as shown in Table 9.  
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Table 9  Vehicle Groups 

Group Priority Description 

1 2 Vehicle with an origin on a link that is soon-to-be flooded at departure time and a 
destination on a link that is soon-to-be flooded or closed at the expected arrival time  

2 4 Vehicle with an origin on a link that is soon-to-be flooded at departure time 

3 1 Vehicle with an origin on a link that is closed at departure time 
or vehicle that cannot reach any safe destination  

4 3 Vehicle with a destination on a link that is soon-to-be flooded or closed at the expected 
arrival time 

5 5 Vehicle with an intermediate link that is soon-to-be flooded or closed at the expected time of 
entry 

6 6 Unaffected vehicles 

 
In the future connected vehicle environment, all vehicles in the system at the time the framework 
is initiated, would be analyzed and grouped simultaneously. Then, once a new vehicle is detected 
in the area, it would be analyzed and grouped independently. 
 

	
Figure 21 Input/ Output data of vehicles analysis step 

Java code has been developed to complete this step and the pseudocode is shown in Appendix A. 
As shown in Table 9, each group is given a specific priority from 1 to 6, with 1 being the highest. 
A vehicle can belong to more than one group but the one with the highest priority dominates. For 
example, if a vehicle belongs to groups 5 and 3, the latter dominates because the vehicle cannot 
leave its origin and should only receive a warning to wait at the origin. Similarly, if a vehicle 
satisfies the conditions of groups 2 and 4, it is assigned to group 1.  
 
This hierarchy is ensured through the order of the if-statements in the grouping method shown in 
the vehicle analysis pseudocode. Each if-statement evaluates the conditions of a given group. The 
order adopted goes from the lowest to the highest group priority. Hence, all vehicles are first 
assigned to group 6 which is the group with the lowest priority. Then, if the vehicle satisfies the 
conditions of the next if-statement’s group (i.e. group with higher priority), the group will be over 
written to obtain at the end the final group of each vehicle. 
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4.2.3.3 Routing  
In future connected vehicle environment, the link performance measures would be updated 
regularly through the connected vehicles and TMCs. Once the routing algorithm is triggered, the 
most recent link data (from TMCs) would be used in the hyperstar algorithm (Bell, Trozzi et al. 
2012). In this research, we assigned, for each link, a time threshold after which the link is 
considered closed and the delay is infinite to reflect the flood.  
 
Depending on the vehicle’s group, the vehicle either receives a warning or route guidance. When 
the latter is needed, the hyperstar algorithm is initiated and requires, as input, a set of node 
potentials that is specific to the destination. In our study, a potential at a node refers to the 
remaining undelayed travel time from the node to the destination.  
 
To obtain all node potentials to a specific node in the network, the partitioning shortest path 
algorithm (Glover, Klingman et al. 1985) is used. This algorithm computes the shortest path from 
one node to all other nodes in the network. Thus, computing all node potentials to a given 
destination consists of first, reversing the network (i.e., reversing the direction of each link while 
keeping the same link costs), and then implementing the algorithm from the destination to all 
nodes.  
 
For translation to the field, we assume that the node potentials to each node in the network are 
already computed and stored in the traffic management center’s database. As a result, whenever 
the hyperstar from an origin to a destination is to be implemented, the node potentials that 
correspond to the destination are retrieved and used to ensure faster computations of the hyperpath. 
In this research, once the hyperpath between an origin and a destination has to be identified, the 
partitioning algorithm is initiated and the node potentials to the given destinations are computed 
before calculating hyperpaths.  
	
4.2.3.4 Process 
In this final step, vehicles are evaluated successively. Once selected, and depending on the 
vehicle’s group, the corresponding tasks are executed as follows:  

• Group 1 (Figure 22): These vehicles have origins on links that are soon-to-be flooded at 
their departure times and destinations on links that are soon-to-be flooded or closed at the 
vehicles’ expected arrival times. The objective is to assist them first in reaching safe stops 
as soon as possible, and then in resuming their trips toward final destinations. These 
vehicles cannot reach their original destinations because their expected times of arrival fall 
after time “t1” (refer to Figure 17) at which the link is soon-to-be flooded or closed. Thus, 
a new safe destination is proposed to the driver. It is a node in buffer 2 that is the closest to 
the original destination in terms of travel time. In this study, we assume that all users accept 
the proposed new destination in buffer 2. Once the new destination is defined, its closest 
node from buffer 1 is then identified and acts as the first safe stop. The vehicle is routed 
from its origin to the closest node in buffer 1 first, to ensure it exits the flooded zone as 
soon as possible while also minimizing its remaining distance to the final destination. 
During this part of the trip, the vehicle is allowed to travel on soon-to-be flooded links but 
entry to closed links is prohibited. Once the vehicle reaches the intermediate safe stop at 
buffer 1, the vehicle is provided with a new set of alternative paths to reach its final safe 
destination while preventing re-entry to the soon-to-be flooded and closed links.  
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When no hyperpath is found between the vehicle’s position and the assigned first stop, the 
next closest node in buffer 1 is selected. If no path exists between the vehicle’s origin and 
any node in buffer 1, the vehicle has to wait at the origin and is, hence, moved to group 3.  
When no hyperpath is found between the node in buffer 1 and the final destination, we 
assume that the user can wait at buffer 1. 
 

• Group 2 (Figure 23): These vehicles have an origin on a link that is soon-to-be flooded at 
departure time. The goal is to assist them in reaching a safe stop first before resuming the 
trip toward the final destination. The closest node from buffer 1 to the destination is 
identified and acts as the first safe stop. A set of alternative paths is computed between the 
origin and the node in buffer 1 (this hyperpath may include soon-to-be flooded links but 
not closed links), then a new set of paths is identified from the node in buffer 1 to the final 
destination (this hyperpath cannot include soon-to-be flooded or closed links). 
 
When no hyperpath is found between the vehicle’s initial position and the closest node in 
buffer 1, the next closest node to the destination is evaluated. If no hyperpath is found 
between the position and any node in buffer 1, the vehicle has to wait at the origin and is 
listed in group 3. When no hyperpath is found between the node in buffer 1 and the 
destination, the user waits at buffer 1. 
 

• Group 3: These vehicles have an origin on a link that is closed at departure time. Thus, they 
receive a warning message instructing them to wait at the origin. This group includes as 
well the vehicles from groups 1, 2, 4 and 5 that cannot reach any safe destination. 
 

• Group 4 (Figure 24): These vehicles have a destination on a link that is soon-to-be flooded 
or closed at the vehicle’s expected time of arrival. A new destination at the closest node in 
buffer 2 to the original destination is assigned. The user subsequently receives a set of 
alternative paths between its origin and the new safe destination (this hyperpath cannot 
include soon-to-be flooded or closed links). 

 
When no hyperpath exists between the origin and the selected node in buffer 2, the next 
closest node to the destination is evaluated. If no hyperpath can be identified between the 
origin and any of the nodes in buffer 2, the vehicle has to wait at the origin and is listed in 
group 3. 
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Figure 22  Group 1 Processing 
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Figure 23 Group 2 Processing 
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Figure 24 Group 4 Processing 
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• Group 5 (Figure 25): These vehicles have one or more intermediate links that are soon-to-
be flooded or closed at the expected time of entry. As a result, the driver has to modify 
his/her planned path. The driver is provided with a set of alternative paths between the 
original origin and destination (this hyperpath cannot include soon-to-be flooded or closed 
links). If no hyperpath exists between the vehicle’s position and the destination, the vehicle 
waits at the origin and is listed in group 3. 
 

	
Figure 25 Group 5 Processing 

• Group 6: These vehicles are not affected by the flood. Their origin, destination, and path 
are not expected to flood or to be considered as soon-to-be flooded within the duration of 
the trip. As a result, they just receive a message that alerts them about the locations to be 
avoided in case of any deviation from the planned trip. 

	
Table 10 summarizes the tasks that correspond to each group of vehicles. Affected vehicles that 
can still travel receive routing assistance (vehicles in groups 1, 2, 4 and 5), whereas affected 
vehicles that cannot reach any safe destination wait at the origin (group 3) and unaffected vehicles 
receive warning messages disclosing the areas to avoid (group 6). 
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Table 10 Vehicle Group Routing Tasks 

Group Description Tasks 
1 Vehicle with an origin on a link that is soon-

to-be flooded at departure time and a 
destination on a link that is soon-to-be 
flooded or closed at the expected arrival time  

a. Set of paths from origin to node in buffer 1 
(hyperpath may include soon-to-be flooded links but 
not closed links) 

b. Set of paths from node in buffer 1 to node in buffer 2  
(hyperpath cannot include soon-to-be flooded or 
closed links)or wait at buffer 1 

2 Vehicle with an origin on a link that is soon-
to-be flooded at departure time 

a. Set of paths from origin to node in buffer 1 
(hyperpath may include soon-to-be flooded links but 
not closed links) 

b. Set of paths from node in buffer 1 to destination  
(hyperpath cannot include soon-to-be flooded or 
closed links) or wait at buffer 1 

3 Vehicle with an origin on a link that is 
closed at departure time; or vehicle that 
cannot reach any safe destination  

Send warning: “WAIT at origin” 

4 Vehicle with a destination on a link that is 
soon-to-be flooded or closed at the expected 
arrival time 

Set of paths from origin to node in buffer 2 
(hyperpath cannot include soon-to-be flooded or closed 
links) 

5 Vehicle with an intermediate link that is 
soon-to-be flooded or closed at the expected 
time of entry 

Set of paths from origin to destination 
(hyperpath cannot include soon-to-be flooded or closed 
links) 

6 Unaffected vehicles Send warning: areas to avoid 

	

As shown in Figure 26, the output files of the buffer generation and vehicle analysis steps are the 
inputs of the process step. The output files of the process step are: 

• A file that includes, for each vehicle that has been routed, the corresponding hyperpath 
along with the total travel time and the computation times in java, and 

• A list of the vehicles in each group.  
 

For translation to the field, since the route guidance system is assumed to be an in-vehicle system, 
the generation of the hyperpath for each vehicle is executed independently, after the retrieval of 
the corresponding current link data and potentials from the TMC’s database. In this research, the 
vehicles in the system have been evaluated sequentially. Since the hyperstar generates multiple 
paths between an origin and a destination, we randomly select one path to simulate the human 
behavior. However, the path selection would be left to the user in future connected vehicle 
environment.  The pseudocode of this step is shown in Appendix A. 
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Figure 26 Input/ Output data of process step 

	

In Figure 27, the four parts along with the corresponding inputs and outputs are illustrated.  
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Figure 27 Coding flowchart 
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4.3 Applications of the Framework 
The two locations which were designated as the case study locations for this analysis consisted of 
the intersection of Baltic Ave. and 21st St. and the eastern section of the Shore Drive corridor in 
Virginia Beach, VA. These locations were recommended by personnel from the City of Virginia 
Beach. A network was then identified for each case study area through visual inspection using 
aerial photography and street maps. The network for each location ensured a large enough area 
and routing alternatives given a flooding scenario at or near the identified case study locations.  
 
The first case study location network consists of the intersection of Baltic Ave. and 21st St., extends 
approximately 1 mile North, 0.35 miles East, 1.35 miles South and 2.5 miles West. Figure 28 
illustrates the network outlined in red, where the case study location is denoted by a blue circle.  
 

	
Figure 28 Baltic Ave. and 21st St Case Study Network 

The second case study location network consists of the Shore Dr corridor, the selected boundaries 
extend approximately 7 miles from East to West, and ranges from a 1-2 mile North to South 
separation as illustrated in Figure 29. Only the eastern part of this network was used to test the 
framework. 
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Figure 29 Shore Dr case study network 

4.3.1 Generating Framework Input with VISSIM  
The networks were constructed in the PTV VISSIM microscopic traffic simulation software for 
modelling purposes and the determination of travel time functions for use in the determination of 
undelayed travel times. Constructing the networks within the PTV VISSIM software required a 
significant amount of attention to detail as different attributes such as links, stop signs, signal 
timings, vehicle routes, speed decisions, conflict areas and specifying where to collect data 
throughout the networks had to be inserted individually.		
	
A link in VISSIM can be described as the connection between two different street segments, the 
connection itself is accomplished using connectors. A link in VISSIM is only able to carry flow in 
one direction, making it a directed link. Connectors are commonly used at street intersections, 
when there are changes in the number of lanes in corridors, and merging locations in highway 
entrances and exits. Figure 30 illustrates the number of links and connectors in a common four-
way intersection modeled in VISSIM; the links are denoted in blue, while the connectors are in 
purple. The construction of a four-way intersection model in VISSIM requires eight (8) links, and 
twelve (12) connectors.  
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Figure 30 Links and connectors in a VISSIM model intersection 

Stop sign locations were identified using Google Maps street view as well as Google Maps aerial 
images and VISSIM’s built in BING maps aerial imagery. Stop signs were placed in VISSIM as a 
solid bar parallel to the link at their corresponding location on a per lane basis, thus if a two-lane 
segment is regulated by a stop sign, the stop bars were required on each lane. Traffic signal heads 
were similarly input into the VISSIM models and were also illustrated by bars. On most of the 
occasions, stop bars and traffic signal head bars were placed at the end/downstream section of the 
link.  Traffic signal timings were provided by personnel from the City of Virginia Beach, and each 
signalized intersection required individual timings to be input into the VISSIM model.  
	
Static vehicle “routes”6 were utilized to specify the distribution of vehicle movements throughout 
the network and avoid possible gridlock situations. Static vehicle “routes” were placed in VISSIM 
as a set of two bars indicating a start and a finish, and were usually placed at the 
beginning/upstream section of the link were the “path” began and the beginning/ upstream section 
of the link of where the “path” ended. On most occasions, the “path” covered the distance of an 
entire link, connector and just the initial section of the next link in its route. These “routes” were 
placed on every link covering the entire network. Figure 31 illustrates an example of the static 
vehicle “routing.” A fraction was required to be input to identify the percentage of vehicles that 
would make a left, through or right movement. Traffic count data made available through the City 
of Virginia Beach website as well as engineering judgement and simulation observations were 
used to determine the fraction values.   
 
Speed decisions for a given road segment were also incorporated to have a more accurate model. 
Similar to stop signs and traffic signals, speed limits were identified utilizing Google Maps street 
view whenever possible and engineering judgment was used when the information was not 
available. On most occasions, speed decisions bars were commonly placed at the beginning 
/upstream section of the link. This varied when a speed limit would change within the link segment; 
then the speed decision bar was placed where appropriate.  
 

																																																								
6 These routes, in VISSIM terminology, are microscopic considerations, separate from the macroscopic routes 
generated by the Hyperstar algorithm. 
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Figure 31 Vehicle “routing” for a left turn movement in VISSIM 

	
Conflict areas were also addressed individually on all intersections. Conflict areas gave additional 
priority to specific vehicle movements and gave directions to other vehicles to yield until proper 
clearance was available. An example of a conflict area in a typical intersection had the left turning 
movement yielding to through traffic, or a right movement yielding to through traffic. Figure 32 
shows an example of the conflict area described in a VISSIM model. The red denotes where 
vehicles yield while the green denotes right of way.  
	

	
Figure 32 Conflict areas for a four-way signalized intersection in VISSIM 

Next, vehicle input or volume/flow rate entering the networks needed to be added to VISSIM. 
Vehicle inputs were placed at the beginning/upstream section of the link. The volumes entered in 
the vehicle inputs were distributed in hourly rates, thus having units of flow in veh/hr. The vehicle 
volumes utilized were estimated through reference to traffic count data available through the City 
of Virginia Beach website. Vehicle inputs were placed at unique locations using engineering 
judgement to ensure that each link within a network could collect enough data for evaluation.  
 
With the network and vehicle input locations established, vehicle travel times per link and per 
movement could be gathered. Vehicle travel time was collected by placing bars at both the 
beginning/upstream section of the link and indicating the distance to the end/downstream of the 
link and connectors. On most occasions, for a typical four-way intersection, a total of four travel 
time paths were required to be input. The first to collect data on the primary link, the second for 
the link and the left turn movement connector, the third for the link and the through movement 
connector, and the fourth for the link and the right turning movement, as illustrated in Figure 33. 
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It is important to note that all the bars begin at the same location, travel times were collected for 
vehicles traveling on the upstream link and through their respective movement. Differentiation 
between the link travel times and the link and connector travel times provided the amount of time 
a vehicle travels per movement.   
	

	
Figure 33 Placement of vehicle travel time bars in VISSIM 

The methodology discussed above regarding travel time collection on links and collectors required 
an external tracking method to later identify which movement corresponded to each connector. 
Table 11 illustrates the tracking approach for the above illustration; input for all links and 
connectors were tracked on separate tables for determining travel time per movement.  
	

Table 11 Link and Connector Tracking Approach for VISSIM Networks 

Upstream Link 
Connector 

Left Through Right 
1 1 2 3 

	
Table 12 illustrates the summary values of the attributes for both the Baltic and 21st Network and 
the Shore Dr. Network.  
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Table 12 Summary of Attributes in VISSIM Networks 

VISSIM Attributes 
Network 

Baltic & 21st Ave Shore Dr - East 
Links 2221 283 
Connectors 4411 460 
Total (Links + Connectors) 6632 743 
Stop Signs 632 54 
Signalized Intersections 62 4 
Signal Heads 449 39 
Vehicle Routes 1574 139 
Speed Decisions 2199 67 
Vehicle Inputs 311 45 
Vehicle Travel Times 6632 743 

	
4.3.1.1 Node Consideration 
The consideration of nodes was required to successfully implement the hyperstar algorithm. The 
PTV VISSIM software however, does not consider nodes within its methodology as it works with 
links and connectors. Therefore, an external method of inserting and tracking nodes was 
developed. A node was required to be placed between every link and connector for both networks. 
Thus, information regarding the number of links and connectors was required.  A useful summary 
of all the links and connectors was provided by VISSIM upon the completion of a network. Table 
13 illustrates a reduced sample from the Baltic and 21st Network.  
	

Table 13 Link and Connector Summary List from VISSIM 

$LINK:NO NAME NUMLANES LENGTH2D ISCONN FROMLINK TOLINK 
2373 Close Ave 1 175.172 0   
2374 Virginia Beach Blvd 2 255.74 0   
2375 Cardinal Rd 1 164.305 0   

10000 First Colonial Road 1 69.134 1 358 360 
10001 First Colonial Road 2 30.886 1 358 361 

	
Important items to identify from Table 13 were the unique link and connector numbers. The 
“ISCONN” column identifies whether the row was a link or a connector, by either a 0 or a 1 
respectively. If it was a connector, information regarding the upstream link was in the 
“FROMLINK” column and the downstream link was in the “TOLINK” column. Therefore, 
assurance of a complete list of links and connectors was provided by VISSIM.  
 
The incorporation of nodes was then accomplished by stating that only the links were to have a 
start node (Sn) and an end node (En) assigned, where n references the link. Nodes were added in 
increasing order for every link row. (For example, Link 1 was assigned S1 = 1, E1 =2; Link 2 was 
assigned S2 = 3, E2 = 4, etc…) Thus, the start node of the connector was assigned as their respective 
upstream link’s (FROMLINK) end node (En-UpstreamLink), and similarly their end node was their 
respective downstream link’s (TOLINK) start node (Sn-DownstreamLink). Figure 34 illustrates the 
above explanation.  
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Figure 34 Nodes added to the VISSIM network 

4.3.1.2 Data and Travel Time Function Procedure 
4.3.1.2.1 VISSIM simulation organization 
To obtain the required vehicle travel time data and develop travel time functions for individual 
links and connectors, VISSIM simulations were executed multiple times under various flow rates 
or volume vehicle inputs. As previously described, the vehicle inputs were determined through 
reference to traffic counts from the City of Virginia Beach website. The initial vehicle inputs were 
labeled as the base case, and a total of five simulations were executed under different seed values. 
Each simulation ran for a total of 3600 seconds equivalent to 1 hour. Similarly, the base case 
volumes were then increased by ten (10%) and re-executed five times until doubling the initial 
base case value (100%). This was conducted to track the varying travel time under different flow 
conditions. Table 14 illustrates a summary of the previous description.  
	
The process was simplified by taking advantage of VISSIM’s COM API. A VBA script (in 
Appendix B: VISSIM COM API: VBA Simulation Script with Varying Vehicle Inputs) was 
written that was capable of increasing the vehicle input volumes and running each simulation the 
specified number of times. Thus, the necessary data was accurately collected and human error was 
minimized.  
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Table 14 Simulations Conducted in VISSIM 

Simulation Volume Simulation  
Base Case 1 – 5 

+10% 5 – 10 
+20% 10 – 15 
+30% 15 – 20 
+40% 20 – 25 
+50% 25 – 30  
+60% 30 – 35  
+70% 35 – 40  
+80% 40 – 45 
+90% 45 – 50 

+100% 50 - 55 
Total 55 

	
4.3.1.2.2 VISSIM data output 
The data of interest obtained from the final VISSIM simulations consisted of records indicating 
when a vehicle had passed over the start of a vehicle travel time bar, and when it had passed the 
end of a vehicle travel time bar. As previously discussed, vehicle travel time bars were placed at 
the start and end of every link, and the start and end of every connector and their respective 
upstream link. Table 15 illustrates a condensed sample of the data provided by the VISSIM 
software.  
	

Table 15 Raw Vehicle Travel Time Data from VISSIM 

SimRunID Time No_ veh VehType Trav Delay 
1 2.55 893 3 100 2.19 0.89 
1 2.68 2019 7 100 1.35 0 
1 3.73 13995 7 100 2.4 0 
1 4 117 1 100 3.82 0 
1 4.71 726 4 100 4.19 1.8 

		
In Table 15 the first column, “SimRunID” indicates the simulation run and to in vehicle volume 
input it was categorized. The “Time” column indicates the time in seconds of when a vehicle 
passed through the start of the vehicle travel time bar. The “No_” column, indicates the unique ID 
of the vehicle travel time start and finish. In this study, since the travel time was of interest on a 
per link and per connector basis, the “No_” was changed to match the link ID. In cases where there 
was a connector and an upstream link, the connector ID was input as the “No_”. The “veh” column 
identifies the unique vehicle throughout the simulation, thus being able to track the path as a 
vehicle navigates through the network. “VehType” indicates the vehicles type such as car, bus, 
etc. “Trav” indicates the vehicle travel time from the start to the end of the vehicle travel time bars, 
or in this situation, the travel time per link/upstream link and connector. Finally, “Delay” indicates 
the delay experienced by a vehicle when traveling from the start to the end of the vehicle travel 
time bars, or in this situation, the travel time per link/upstream link and connector.  
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4.3.1.2.3 Preparation of raw VISSIM data into the desired format 
The raw data provided by VISSIM was substantial as every link recorded all vehicles traveling it. 
Additional measures were required to format the data into a configuration capable of having travel 
time functions extracted. The flow rate for each link/connector was obtained by counting the total 
number of vehicles that were recorded entering and exiting a segment. Since the simulation was 
executed for 3600 seconds, the addition of these vehicles resulted in a flow rate in units of veh/hr.  
 
The re-formatting process was completed using the R-Studio software, but the steps were as 
follows.  

1. Insert a “Helper” column. After importing the raw data into the R-Studio environment, an 
additional column titled “Helper” was inserted and composed of a string variable 
representing the simulation run and the link/connector ID, separated by an underscore. (Ex. 
If “SimRunID” = 1 and “No_” = 3, “Helper” = 1_3) 

2. Create new data table with unique “Helper” values. The “Helper” column, later helped 
identify all unique values per link/connector. The total observations should equal the 
product of total number of links/connector in the network and the number of simulations 
(in this study, the simulations were 55) 

3. Using a new data sheet, add a new column “Q” and count number of times “Helper” is 
observed in raw data. This resulted in a summary of observed flow rates (veh/hr) per 
link/connector per simulation 

4. Create unique columns of Simulation and Link/Connector by splitting the “Helper” 
column.  

5. Determine the average travel time per simulation per link/connector. This was 
accomplishing by averaging the travel time for all unique “Helper” values. 

6. Determine and add the free flow travel time by subtracting the delay per link/connector 
from the observed travel time.  

Table 16 illustrates a sample of what the final formatted table had in terms of data. Appendix C: 
R-Studio Script to Format Raw VISSIM Output contains the R-Studio script to complete this 
process from VISSIM’s raw data.  
	

Table 16 Formatted Data by R-Studio Script from VISSM’s Raw Output 

Helper	 SimRun	 Link	 Q	
Travel	
Time	 Delay	 Free	Flow	Travel	Time	

1_1	 1	 1	 110	 12.286	 0.562	 11.724	
1_2	 1	 2	 83	 14.341	 1.157	 13.184	
1_3	 1	 3	 127	 36.484	 0.792	 35.691	
1_4	 1	 4	 147	 39.227	 3.782	 35.446	
1_5	 1	 5	 247	 23.327	 2.536	 20.791	

	
4.3.1.2.4 Travel time function procedure 
Obtaining travel time functions for every link/connector in the constructed VISSIM networks 
consisted of utilizing the newly formatted data from the previous step. By sub-setting the entire 
data set by the “Link” column, the average travel time per link for each simulation under varying 
flow conditions was obtained. Therefore, a dataset with 55 observations was obtained for every 
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link/connector constructed in the VISSIM network model. Figure 35 illustrates a plot from one 
link in one of the analyzed networks.  
	

	
Figure	35	Example	of	Formatted	Data	Plotted	with	Observed	Travel	Time	vs	Observed	Flow	Rate	(Q)	

The travel time function for this study consisted of a special non-linear case with travel time as the 
dependent variable and flow as the independent variable. The travel time was considered in units 
of seconds and flow was considered in units of vehicles/hour. Additionally, the intercept was 
constrained to the free flow travel time and a square transformation was applied to flow. Equation 
(1) illustrates the travel time function form. Where n, represents the current link and Q, represents 
the flow rate in veh/hr.  
	
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒. = 𝐹𝑟𝑒𝑒	𝐹𝑙𝑜𝑤	𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒. +	𝛽5(𝑄)9	 	 	 Eq. 1	
	
Equation (1) was utilized to account for possible inconsistencies seen with a linear model. When 
considering the linear mode, there were cases where a negative intercept and/or a negative flow 
coefficient were encountered. Thus, by constraining the intercept to the free flow speed of a link 
with no additional vehicles on the segment; free flow travel time could be obtained for any given 
path throughout the network.   
 
Figure 36 illustrates the differences between a linear model and the special form considered for 
this work. In Figure 36, the red line denotes the linear fit while the green line denotes the special 
from considered.   
 
The above process was required to be completed for every individual link and their respective 55 
data observations. To facilitate this process an R-Studio script was written to perform the non-
linear regression procedure. Appendix D: R-Studio Script to Perform Non-Linear Regression and 
Obtain Travel Time Functions illustrates the R-Studio script for this process.  
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Figure 36 Example of linear and special form fit 

	
4.3.2 Experiments 
The two VISSIM coded transportation networks that were used in the experiments are shown in 
Figure 37 and Figure 38. The tests were executed on a MacBook Pro with a 2.7 GHz Intel Core i5 
processor and a 16 GB 1867 MHz DDR3 memory.  
 
	

	
Figure 37 Network 1 in VISSIM (Baltic Ave. and 21st street) 
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Figure 38 Network 2 in VISSIM (Shore Drive Ave.) 

Two experiments were conducted.  The first examined the scalability of the framework based on 
the two networks. The second examined the sensitivity of the results to the frequency of weather 
and flood forecast updates. This latter test was only conducted on the larger network. The base-
case scenario parameters are as shown in Table 17.  
	

Table 17 Base-Case Scenario Parameters 

Parameters  Value 
Network Network 1 (Baltic Ave. and 21st  street) 
Flood location and depth Links at 2 m elevation and below 
Frequency of weather and flood forecast updates Every 10 minutes 

Timing of flood 

Elevation <= 0.5 m: t4=20 min 
0.5 m< Elevation <=1 m: t4=30 min 
1 m< Elevation <=1.5 m: t4=40 min 
1.5 m< Elevation <=2 m: t4=50 min 

Empty link interval 5 min 

Minimum clearance interval 5 min 
(In Baltic network: max link travel time = 2.22 min) 

Additional clearance interval 5 min 
	
4.3.2.1 Scalability of the framework for different network sizes and structures (Test 1) 
In this test, the framework was applied to Network 1 and Network 2 to evaluate the efficiency of 
the framework in terms of computational times. This comparison indicated how sensitive the 
computation times were to the network size and structure.  
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As shown in Figure 37 and Figure 38, the two networks have different sizes and structures. 
Network 1 is larger than Network 2 with approximately 9 times more links and 8 times more nodes. 
In addition, Network 2 has a more linear shape while Network 1 is more round. Network 1 has a 
higher percentage of local streets when compared to Network 2. The latter has a major arterial 
lying along the entire network from east to west. However, comparing the two networks visually 
is not sufficient. Table 18 presents graph theoretic indices that allow comparison of the two 
networks. First, the cyclomatic number is a measure that indicates the number of independent 
cycles that exist in a network. It is computed using equation (2). As shown in Table 19, Network 
1 has a higher cyclomatic number than Network 2, yet this is mainly due to the fact that Network 
1 is significantly larger than Network 2. The beta index is computed using equation (3) by dividing 
the total number of links by the total number of nodes. A tree network which is a connected 
network with no cycles has a beta index less than 1 while a network with only one cycle has a beta 
index equal to 1. Network 1 and network 2 both have a beta index higher than 1 and this indicates 
that the networks are complex networks and hence representing real-life systems.  Regarding the 
connectivity of the networks, the alpha index is a measure that reflects the number of cycles with 
respect to the maximum possible number of cycles in the network. The higher the alpha index, the 
more connected the network is. Similarly, the gamma index is a descriptor that evaluates the total 
number of links with respect to the total number of possible links. A higher gamma index implies 
a more complete network. As shown in Table 19, Network 2 has a higher gamma index as well as 
a higher alpha index, thus, Network 2 is more connected and more complete than Network 1. 
	

Table 18 Network Descriptors (Notation and Equation) 

Descriptor Notation Equation 

Total number of links 𝐴	 	 	
Total number of nodes 𝑁	 	 	
Number of isolated subgraphs 𝑝	 	 	
Cyclomatic number 𝜇	 𝜇 = 𝐴 − 𝑁 + 𝑝	 (1) 
Beta index 𝛽	 𝛽 = 𝐴/𝑁	 (2) 
Alpha index 𝛼	 𝛼 = 2𝜇/( 𝑁 − 1 𝑁 − 2 )	 (3) 

Gamma index 𝛾	 𝛾 = 2𝐴/(𝑁 𝑁 − 1 )	 (4) 

	
In both networks, the same percentage of flooded links with respect to the total number of links is 
tested. Since the base-case scenario implies that 2.7 % (=178/6632) of the links in Network 1 are 
flooded, the 20 (=(743*178)/6632) lowest-lying links are considered flooded in Network 2.  
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Table 19 Networks Characteristics 

Network characteristics Network 1 Network 2 

Number of links 6632 743 

Number of nodes 4442 572 

Number of flooded links 178 20 

Cyclomatic number  2191 172 

Beta index 1.49 1.3 

Alpha index  0.00022 0.00106 

Gamma index 0.00067 0.0045 

Number of vehicles 5002 1984 

	

As shown in Table 20, the number of affected vehicles in Network 2 is slightly higher than the one 
in Network 1. Yet, the percentage of affected vehicles in Network 2 is 6.8% (=135/1984) and is 
significantly higher than the 2.2% (=111/5002) for Network 1. The same percentage of flooded 
links was tested; however, the impact of the flood was more extensive in Network 2. The location 
of the flooded links relative to the origins and destinations of the vehicles affects the number of 
affected vehicles and is the main reason behind the difference in the numbers of vehicles per 
category (shown in Table 21) even when the same percentage of links is flooded. In addition, the 
functional classification of the flooded links plays a major role in defining the impact of the flood 
on the vehicles. For instance, a flood on an arterial or a highway affects more vehicles than a flood 
on a residential and local street.  
 

Table 20 Number of Vehicles per Category (Test 1) 

 Network 
Category 1 2 
Number of unaffected vehicles 4891 1849 
Number of affected vehicles 111 135 
Number of routed vehicles 100 130 

	
Table 21 Number of vehicles per group (Test 1) 

 Network 
 1 2 

Group Initial grouping Final grouping Initial grouping Final grouping 
Group1 0 0 4 4 
Group2 10 10 103 103 
Group3 11 11 0 5 
Group4 63 63 15 13 
Group5 27 27 13 10 

	
Table 21 shows the initial and final number of vehicles per group for each network. The initial 
grouping was the grouping that resulted from the “vehicle analysis” step in the framework while 
the final grouping was the one obtained after executing the “process” step. Different initial and 
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final grouping occurred when vehicles that had to be routed (vehicles in group 1, 2, 4 or 5) were 
moved to group 3 after the “process” step. These vehicles that were moved to group 3 were not 
located on a closed link at departure time but could not reach a safe destination because of 
downstream floods which prevented the generation of any possible hyperpath between their origins 
and destinations. Regarding Network 1, the initial and final groupings were the same. However, 
in Network 2, two vehicles and three vehicles were moved from group 4 and group 5, respectively, 
to group 3 while vehicles in group 1 and group 2 all received routing assistance.  
 
On the other hand, as shown in Table 21, the affected vehicles were distributed differently across 
the groups in the two networks.  For instance, no vehicle belonged to group 1 in Network 1 while 
in Network 2, 3% (= 4/135) of the affected vehicles were added to group 1 which represented the 
vehicles with a soon-to-be flooded origin and a soon-to-be or closed destination. Furthermore, 9% 
(=10/111) of the affected vehicles belonged to group 2 (i.e., vehicles with origins on soon-to-be 
flooded links) in Network 1 while 76% (=103/135) of the affected vehicles belonged to group 2 in 
Network 2. This significant difference was due to the fact that in Network 2, the flood occurred on 
links on which vehicles were generated. In addition, 10% (=11/111) of the affected vehicles 
belonged to group 3 and had to wait at the origin in Network 1; however, in Network 2, 0% of the 
affected vehicles had origins on closed links (initial grouping) but 3.7% (=5/135) were moved to 
group 3 because no hyperpath was found. In Network 2, no vehicle belonged to group 3 in the 
initial grouping because no vehicle was generated from the links with vehicle inputs after their 
corresponding time t3, while 103 vehicles (number of vehicles in group 2 in initial grouping) were 
generated between times t1 and t3 for these links that were considered soon-to-be flooded at the 
vehicles’ departure time. Regarding group 4 (i.e., vehicles with soon-to-be flooded destinations) 
and group 5 (i.e., vehicles with soon-to-be flooded or closed intermediate link(s)), higher 
percentages per group were recorded in Network 1 compared to Network 2. The grouping of 
vehicles highly depended on the position of the flooded links relative to the position of the 
generation points in the modeled network (in VISSIM). In real life, a flood that leads to the closure 
of major production and attraction links as well as a flood on higher capacity links is expected to 
affect the system more than floods on links with low productions and attractions and floods on 
local roads. 
 
Table 22 shows the average, minimum, and maximum computation times recorded for Network 2 
were lower than those in Network 1. Similarly, all average computation times per group were 
smaller for Network 2. These results were expected because Network 2 was smaller than Network 
1 and the hyperpath computations took less time because the hyperpaths in Network 2 were, by 
default, shorter than the ones in Network 1. The group with the highest average computation time 
was group 4 in Network 1. This group included the vehicles with soon-to-be flooded or closed 
destinations at their expected arrival time. This group recorded the highest average computation 
time due to the time-consuming search for a new destination. For instance, the maximum 
computation time of 49.04 seconds belonged to a vehicle (ID: 4394) in group 4 and the search for 
a new destination required 48.95 seconds. To minimize the significant computation times required 
for the search for a new destination for vehicles in groups 1 group 4 (i.e., vehicles with soon-to-be 
flooded or closed destinations), the search for a new destination can be stopped after evaluating a 
specific number of tentative destinations. In future implementation, the framework can also be 
extended to allow the users in groups 1 and 4 to enter new destinations of their choice; thus, 
enhancing the user’s preferences and the computational efficiency by eliminating the search for a 
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new destination. In Network 2, the group with the highest average computation time was group 2. 
The computation times for this group were the sum of the computation times needed to generate a 
hyperpath from the origin to a node in buffer 1 and the computation times needed to generate a 
hyperpath from buffer 1 to the destination. In Network 2, the average computation time was small 
which meant the search for new safe destination was less time-consuming in smaller networks. 
 

Table 22 Computation Times in Test 1 

 Network 
Computation times (seconds) 1 2 

Average 1.47 0.06 
Min 0.39 0.01 
Max 49.04 0.27 

 
Table 23 Average Computation Times per Group for Test 1 

Average computation times  
(seconds) 

Network 
1 2 

Group 1 NA 0.06 
Group 2 1.20 0.07 
Group 4 1.88 0.05 
Group 5 0.61 0.02 

 
As shown in Figure 39, in Network 1, the computation time interval that included the highest 
percentage of routed vehicles was the interval between 0.5 and 1 second. Three vehicles in group 
4 recorded a computation time greater than 2 seconds; these vehicles were assigned to a new 
destination and the search for a new accessible destination in buffer 2 was time-consuming. In 
Network 2, the computation times for all routed vehicles fell in the interval between 0 and 0.5 
second.  The reason why the computation times in Network 2 were significantly smaller than in 
Network 1 was the network size. The time needed for the search for a new destination for vehicles 
in group 4 was the most sensitive to the size of the network. This test indicated that the increase 
of the network size resulted in an increase of the required computation times recorded by routed 
vehicles. Yet, the computation times recorded in Network 1, except for the vehicles that recorded 
a computation time greater than 2 seconds, were still reasonable and can be minimized by stopping 
the search after scanning a specific number of tentative destinations. Further increases in the 
network size can be tested in the future.  
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Figure 39  Percentage of routed vehicles within each computation time interval for different networks for Test 1 

	
4.3.2.2 Sensitivity to Weather and Flood Update Frequency (Test 2) 
In this study, we assumed that the TMC updated and received the flood input data from weather 
and flood forecasts systems at a specific frequency. This test evaluated the results’ sensitivity to 
variation in the weather and flood forecasts’ update frequency. The following scenarios were tested 
and represented in Table 24: 

• Scenario 1: 1-minute update frequency (or near-continuous update) 
• Scenario 2: 5-minutes update frequency  
• Scenario 3: 10-minutes update frequency (base scenario) 

 
Table 24 Time of Flood (t4) Corresponding to Each Elevation Interval in Each Scenario 

Elevation interval Real time of flood  Scenarios 
1 2 3 

Elevation <= 0.5 m 28 28 25 20 
0.5 m< Elevation <=1 m 33 33 30 30 
1 m< Elevation <=1.5 m 49 49 45 40 
1.5 m< Elevation <=2 m 59 59 55 50 
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As shown in Table 24, as the weather and flood forecasts were updated less frequently, early 
closures resulted. For instance, if near-continuous updates (i.e., every 1-minute) indicated that a 
given link flooded at time t = 28 min, the time of flood (t4) of the same link was considered at time 
t= 25 min and at time t=20 min with an update frequency of 5 minutes and 10 minutes, respectively. 
In the case of the 10-minute updates, the links are considered closed and soon-to-be flooded 8 
minutes earlier than the actual flood time.		
 
Table 25 indicates that with less frequent weather and flood forecast updates, the numbers of 
affected vehicles and routed vehicles (i.e. vehicles in groups 1, 2, 4 and 5) increased. Links were 
closed and considered as soon-to-be flooded earlier in time. Hence, fewer weather and flood 
forecast updates resulted in a lengthier impact on the road users. In scenario 1, the first set of links 
considered as soon-to-be flooded were at time t= 13 min (=28 – Empty link interval of 5 min – 
Minimum clearance and additional clearance interval of 10 min) while the first set of links 
considered as soon-to-be flooded in scenario 2 was at time t=10 minutes and at time t=5 minutes 
in scenario 3. 
 

Table 25 Number of Vehicles per Category for Different Update Frequencies 

 Update Frequency  
Category 1 min 5 min 10 min 

Number of unaffected vehicles 4939 4916 4891 
Number of affected vehicles 63 86 111 
Number of routed vehicles 56 79 100 

 
As shown in Table 26, fewer updates led to the increase of the number of vehicles in each group 
for all cases except the shift from a 1-minute frequency to a 5-minute frequency in which the 
number of vehicles in group 3 did not change. For instance, fewer updates resulted in earlier “t3” 
for all links. Let durations Xi be the difference between the time t3 of a link in a 1-minute frequency 
update and the time t3 the link in a 5-minute frequency updates, “i" being the link’s elevation 
interval. Based on the simulated vehicle data obtained from VISSIM, no additional vehicle had a 
departure on one of the flooded links during this duration Xi; thus, no additional vehicle was added 
to group 3 when shifting from scenario 1 to scenario 2. However, when shifting from a 5-minute 
frequency to a 10-minute frequency, four additional vehicles were added to group 3 and were 
subsequently prohibited from leaving their origins because no hyperpaths to their final destinations 
were found. These vehicles belonged to group 2 in scenarios 1 and 2 during which they were able 
to leave their soon-to-be flooded origins to reach their corresponding destinations. 
 

Table 26  Number of Vehicles per Group for Different Update Frequencies 

 Update Frequency  
Group 1 min 5 min 10 min 
Group1 0 0 0 
Group2 5 9 10 
Group3 7 7 11 
Group4 37 51 63 
Group5 14 19 27 
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In Table 27, the basic statistical measures of the computation times of the routed vehicles for each 
scenario are shown. The average computation time decreased with fewer updates. With more 
updates, the vehicles with longer trips remained affected and these vehicles required more 
computation time to generate their corresponding paths than the ones with short trips. The 
maximum recorded computation time in all the scenarios belonged to the same vehicle (ID: 4394) 
that was discussed earlier.  
 

Table 27 Computation Times for Different Update Frequencies 

 Update Frequency  
Computation times (sec) 1 min 5 min 10 min 
Average 2.09 1.72 1.47 
Min 0.36 0.35 0.39 
Max 49.03 49.88 49.04 

 
Figure 40 shows the percentages of routed vehicles that fell within each computation time interval 
for different update frequencies. The percentage of routed vehicles that had a computation time 
greater than or equal to 0.5 second and less than 1 second had the highest percentage at all update 
frequencies. Nearly identical percentages were reported for each computation time interval which 
indicated that the variation in update frequency did not imply impact on the computation time but 
it affected the impact on the system in terms of the number of affected vehicles. Note that all the 
vehicles that had a computation time greater than or equal to 2 seconds belonged to group 4. Since 
these vehicles could not reach their original destinations, new destinations that were reachable 
nodes in buffer 2 and that were the closest to the original destination were assigned for each 
vehicle. The search for a new destination was time-consuming but can be limited in future works. 
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Figure 40 Percentage of routed vehicles within each computation time interval for different forecast update 
frequencies  
	
4.4 Conclusion  
This study proposed a traveler assistance framework for use in a connected vehicle environment 
and in conjunction with high resolution weather and road flooding prediction systems. The 
intended use of the framework was for nuisance flooding where neighborhood evacuation was 
unnecessary. Inputs to the framework included the transportation network with undelayed travel 
time and maximum delay for each link; predictions of road flooding, including location and timing; 
and vehicle origins, destinations, intended paths, and departure times. The framework identified 
vehicles affected by the flood to whom guidance was provided. Based on the affected vehicle’s 
path and departure time and the location and time of the flood, the vehicle was either requested to 
wait at the origin or received routing assistance in the form of a hyperpath. The hyperpath, 
computed using the Hyperstar algorithm developed by Bell, Trozzi et al. (2012), was a set of 
alternative paths that connected the vehicle’s origin to its destination while preventing entry to 
links that are soon-to-be flooded or closed. If the destination of the vehicle was positioned on a 
link that could not be entered due to the floods, the vehicle was assigned to a new safe destination. 
If the vehicle could not reach any safe destination, it was instructed to wait at the origin along with 
the vehicles that were originally positioned on a closed link. Vehicles that departed from a soon-
to-be flooded link received a hyperpath to a safe node first to ensure that it exited the flooded link 
or area as quickly as possible. Then, they received a second hyperpath to resume the trip to their 
final destination.  
 
The proposed framework was tested with simulated vehicle data on two transportation networks 
modeled in VISSIM based on the City of Virginia Beach. The tests included evaluating the 
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scalability of the framework to different transportation network sizes and the sensitivity of the 
results to weather and flood forecasts’ update frequency. With fewer updates, more vehicles were 
rerouted, likely causing more congestion on alternate routes. Higher temporal resolution weather 
and flood prediction systems can help reduce this effect in the future.  The computation time of is 
influenced by the size of the network; however, the computation time for the larger network and 
was still reasonable. Thus, further increase in the network size can be tested in the future.  
 
In the experiments, vehicles with soon-to-be flooded or closed destinations had the highest 
computation times due to the time-consuming search for new safe destinations. To enhance the 
computation times of these vehicles (and vehicles in group 1 as well), the search for a new 
destination can be limited and stopped after the evaluation of a maximum number of tentative 
destinations. Similarly, and to minimize the computation time of vehicles in groups 1 and 2 
(vehicles on soon-to-be flooded origins directed to a safe stop first then to the final destination), 
the user can receive the first hyperpath and start travelling while the second hyperpath is being 
computed.  
 
The computation times in this study were fairly small (generally less than 1 second, except when 
needing to search for a new destination). With improvements in the way identifying or searching 
for a new destination is performed, the overall performance could be improved. Based on the 
findings thus far, the framework has strong potential for use in the connected vehicle environment. 
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5 Recommendations 
Overall, the research findings were promising and suggested that future implementation of a 
system like the one investigated here could be successful in a connected vehicle environment. 
However, a few steps are needed before it would be fully ready for implementation. 
 
As demonstrated in the test of the influence of the weather and flood prediction update frequency, 
with less frequent updates, more vehicles are affected, leading to some unnecessary re-routing and 
potential congestion. Greater frequency and spatial localization of the rainfall predictions require 
future research for extreme rainfall events that assimilates accurate radar precipitation and soil 
moisture data. 
 
To improve the road flood prediction, greater amounts of data need to be collected. Ideally, the 
data would be collected on all roads and the flooding observations would be automated, helping 
to remove some of the bias introduced into the data used for this study.  Additionally, with more 
training data, the model could be trained on specific subsets of flood events to tailor the model to 
a flood event with specific characteristics (e.g. flash floods).   
 
The routing framework could also be further improved. First, a faster approach is need to select a 
new safe destination for vehicles with an unreachable destination. An interface may ask a future 
user for a new destination and/or present the user with options for rejection/selection. Next, the 
framework could be further evaluated by combining it with microscopic traffic simulation tools to 
capture the flow variations due to the assignment of vehicles to the new routes, allowing for the 
determination of benefits in terms of travel time, fuel consumption, emissions, and other 
performance measures. Future work could also use link specific values of the empty and minimum 
clearance intervals. Finally, the hyperstar routing algorithm could triggered even after the trip 
initiation, at intermediate nodes. Since unexpected events are likely to turn an optimal route into a 
suboptimal one due to incurred delays, generating an updated hyperpath from downstream 
intermediate nodes to the destination is a technique that continuously searches for better routes. If 
significant time savings could be acquired, the new hyperpath from the intermediate node to the 
destination could be presented to the user.  
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Appendix A: Framework Pseudocode 
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Process	main	class	{	
	
Read	the	input_vehicle	file;	
	
For	each	vehicle	v	(group,	origin,	destination,	start_time):	{	
max_computation_time=0;	
	

If	(group	=1)	{	 	 	 	 	
time1(1)	=	start_time;	

	 	 Find	the	closest	node	in	buffer	2	to	destination;	
	 	 New	destination	=	closest	node	in	buffer	2;	
	 	 Find	closest	node	in	buffer	1	to	new	destination;	

Run	partitioning	algorithm	to	the	selected	node	in	buffer	1;	
	 	 Run	hyperstar	between	origin	and	node	in	buffer	1;	

	
while	(hyperpath	is	empty	&&	next	closest	node	in	buffer	1	exists)	{	

	 	 	 Find	the	next	closest	node	in	buffer	1	to	the	destination;	
	 Run	the	partitioning	algorithm	to	the	selected	node	in	buffer	1;	

	 	 	 Run	hyperstar	between	the	origin	and	the	selected	node	in	buffer	1;	
}	

	
	 	 if	(hyperpath	is	empty)	{	
	 	 	 add	the	vehicle	to	group	3;	
	 	 }	
	
	 	 else	{	
	 	 	 add	the	vehicle	to	group	1;	
	 	 	

time1(1)=end;	
if	(time1(1)>	max_computation_time)	

	 	 	 	 max_computation_time=time1(1);	
	 	 	

output	=	Select_path	method	(v);	 	
	 	 	 add	output	to	ROUTING	file;	 	

Get	actual	time	of	arrival	at	buffer	1;	
	 	 	

If	(node	in	buffer	1	==	node	in	buffer	2)	
	 	 Vehicle	has	reached	destination	à	stop;	

	
else	{		

time1(2)	=	start;	
set	start_time	=	actual	time	of	arrival	at	buffer	1;	

	 Run	the	partitioning	algorithm	to	destination	at	buffer	2;	
	 Run	hyperstar	between	node	in	buffer	1	and	node	in	buffer	2	
	

	 	 if	(hyperpath	empty)	
	 	 	 Vehicle	is	blocked	and	has	to	wait	at	buffer	1;	add	to	subgroup	1b;	
	
	 	 else	{	

time1(2)=end;	
if	(time1(2)>	max_computation_time)	

	 	 	 max_computation_time=time1(2);	
	 	 	

output=	Select_path	method	(v);	
	 	 add	output	to	ROUTING	file;	 	 	 	
	 }	
}	

	 	 }	
	 }	

	
If	(group	=2	)	{	 	 	 	 	

	 	 time2(1)	=start_time;	
Find	the	closest	node	in	buffer	1	to	destination;		
Run	the	partitioning	algorithm	to	the	selected	node	in	buffer	1;	

	 	 Run	hyperstar	between	the	origin	and	the	node	in	buffer	1;	
	
	 	 while	(hyperpath	is	empty	&&	next	closest	node	in	buffer	1	exists)	{	
	 	 	 Find	the	next	closest	node	in	buffer	1	to	the	destination;	

	 Run	the	partitioning	algorithm	to	the	selected	node	in	buffer	1;	
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	 	 	 Run	hyperstar	between	the	origin	and	the	selected	node	in	buffer	1;	
	 	 }	
	
	 	 if	(hyperpath	is	empty)	{	
	 	 	 add	the	vehicle	to	group	3;	
	 	 }	
	 	 		
	 	 else	{	
	 	 	 add	the	vehicle	to	group	2;	 	 	 	
	

time2(1)=end	
if	(time2(1)>	max_computation_time)	

	 	 max_computation_time=time2;	
	

output	=	Select_path	method	(v)		
	 	 	 add	output	to	ROUTING	file	 	

Get	actual	time	of	arrival	at	buffer	1;	
	 	
	 If	(node	in	buffer	1	==	destination)	
	 	 Vehicle	has	reached	destination	à	stop;	
	

else	{	
time2(2)=start;	
set	start_time	=	actual	time	of	arrival	at	buffer	1;	

	 	 	 	 Run	the	partitioning	algorithm	to	the	destination;	
	 	 	 	 Run	hyperstar	between	node	in	buffer	1	and	destination;	

	
	 	 	 	 if	(hyperpath	empty)	

	 	 	 	 Vehicle	is	blocked	and	has	to	wait	at	buffer	1;	add	to	subgroup	2b;	
	 	
	 	 else	{	

time2(2)=end;	
if	(time2(2)>	max_computation_time)	

	 	 	 	 max_computation_time=time(2);	
	 	

	 	 	 	 	 output=	Select_path	method	(v);	
	 	 	 	 	 add	output	to	ROUTING	file;	 	 	 	
	 	 	 	 }	
	 	 	 }	 	 	 	
	 	 }	
	 }	
	 	

If	(group	=3)	{	 	
	 	 Add	the	vehicle	to	group3;	
	 }	
	

If	(group	4){	
	 	 time4=start_time;	

Find	closest	node	in	buffer	2	to	destination;	
New	destination	=	closest	node	in	buffer	2;	
Run	the	partitioning	algorithm	to	the	selected	node	in	buffer	2;	

	 Run	hyperstar	between	origin	and	the	node	in	buffer	2;	
	

while	(hyperpath	empty	&&	next	closest	node	in	buffer	2	exists)	
	 	 	 Find	the	next	closest	node	in	buffer	to	the	destination;	

	 Run	the	partitioning	algorithm	to	the	selected	node	in	buffer	2;	
	 	 	 Run	hyperstar	between	the	origin	and	the	selected	node	in	buffer	2;	
	 	 }	
	
	 	 if	(hyperpath	is	empty)	{	
	 	 	 add	the	vehicle	to	group	3;	
	 	 }	
	
	 	 else	{	
	 	 	 add	the	vehicle	to	group	4;	

time4=end;	
if	(time4>	max_computation_time)	
	 max_computation_time=time1;	

	 	 	 output	=	Select_path	method	(v);	 	
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	 	 	 add	output	to	ROUTING	file;	 	
	 	 }	
	 }	 	 	

	
If	(group	5)	{	

time5=start_time;	
Run	partitioning	algorithm	to	destination;	

	 Run	hyperstar	between	origin	and	destination;	
	

if	(hyperpath	empty)	
add	the	vehicle	to	group	3;	

	 	 }	
	 	 	
	 	 else	

add	the	vehicle	to	group	5;	
time5=end;	
if	(time5>	max_computation_time)	

	 	 	 	 max_computation_time=time1;	
	 	 	 output	=	Select_path	method	(v);	 	
	 	 	 add	output	to	ROUTING	file;	 	

}	
	 }	

	
If	(group	=6)	{	 	

	 	 Add	the	vehicle	to	Outputfile_Group6;	
	 }	
	
Get	max	computation	time	
}	
	
select_path	method	(vehicle)	{	
	 Scan	the	hyperpath	of	vehicle	v;	
	 Scan	the	actual	network	(with	actual	data);	
	
	 end=	origin	of	v;	
	 time	to	destination	=	start	time	of	v;	
	 path	=	empty;	
	 while(end	is	not	destination){	
	 	 find	the	links	in	hyperpath	exiting	node	end;	
	 	 select	a	link	(generate	a	random	number)	and	add	it	to	the	path;	
	 	 time	to	destination	=	time	to	destination	+	travel	time	of	selected	link;	
	 	 end=	end	node	of	the	selected	link;	
	 }	
	 	

return	array	of	String	(index	0:	vehicle	id,	index1:	time	of	arrival	at			
destination	and	index	2:	path	to	destination);	

}	
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Appendix B: VISSIM COM API: VBA Simulation Script with Varying 
Vehicle Inputs 

	
'	SIMULATION	1	
'====================================================================	
'global	variables	
'====================================================================	
Dim	Vis,	Sim,	vnet	
Dim	VI_number	
Dim	new_volume	
'====================================================================	
'main	program	
'====================================================================	
Set	Vis	=	CreateObject("VISSIM.Vissim")	
Set	Sim	=	Vis.Simulation	
Set	vnet	=	Vis.Net	
Vis.LoadNet("C:\...(Path	to	.net	file)	“)	'Load	Net	
Vis.LoadLayout("C:…(Path	to	.layx	file)	")	'	Load	layout	
	
'====================================================================	
'SIMULATION	1_Base	
'====================================================================	
'Configure	the	Simulation	
Vis.Simulation.AttValue("RandSeed")	=	21	
Vis.Simulation.AttValue("RandSeedIncr")	=	3		
Vis.Simulation.AttValue("NumRuns")	=	5		
	
'	VI	=	Vehicle	Input	
VI_number1	=	1	
VI_number2	=	2	
VI_number3	=	3	
VI_number4	=	4	
VI_number5	=	5	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
	
'Define	Volume	as	variable	
	
'	vehicles	per	hour	
new_volume1	=	100	
new_volume2	=	75	
new_volume3	=	75	
new_volume4	=	75	
new_volume5	=	75	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
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‘	Vehicle	input	final	volume	
new_volume11	=	new_volume1	*	1	
new_volume21	=	new_volume2	*	1	
new_volume31	=	new_volume3	*	1	
new_volume41	=	new_volume4	*	1	
new_volume51	=	new_volume5	*	1	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
	
‘	Allocating	volume	from	previous	step	to	Vehicle	input	in	VISSIM	
Vis.Net.VehicleInputs.ItemByKey(VI_number1).AttValue("Volume(1)")	=	new_volume11	
Vis.Net.VehicleInputs.ItemByKey(VI_number2).AttValue("Volume(1)")	=	new_volume21	
Vis.Net.VehicleInputs.ItemByKey(VI_number3).AttValue("Volume(1)")	=	new_volume31	
Vis.Net.VehicleInputs.ItemByKey(VI_number4).AttValue("Volume(1)")	=	new_volume41	
Vis.Net.VehicleInputs.ItemByKey(VI_number5).AttValue("Volume(1)")	=	new_volume51	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
	
'	Set	maximum	speed:	
Vis.Simulation.AttValue("UseMaxSimSpeed")	=	True	
'run	the	simulation		
Vis.Simulation.RunContinuous	
	
'====================================================================	
'SIMULATION	2_+10%	
'====================================================================	
'Configure	the	Simulation	
Vis.Simulation.AttValue("RandSeed")	=	22	
Vis.Simulation.AttValue("RandSeedIncr")	=	3		
Vis.Simulation.AttValue("NumRuns")	=	5		
	
'	VI	=	Vehicle	Input	
VI_number1	=	1	
VI_number2	=	2	
VI_number3	=	3	
VI_number4	=	4	
VI_number5	=	5	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
	
'Define	Volume	as	variable	
	
'	vehicles	per	hour	
new_volume1	=	100	
new_volume2	=	75	
new_volume3	=	75	
new_volume4	=	75	
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new_volume5	=	75	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
‘	Vehicle	input	final	volume	
new_volume12	=	new_volume1	*	1.1	
new_volume22	=	new_volume2	*	1.1	
new_volume32	=	new_volume3	*	1.1	
new_volume42	=	new_volume4	*	1.1	
new_volume52	=	new_volume5	*	1.1	
	
‘	Allocating	volume	from	previous	step	to	Vehicle	input	in	VISSIM	
Vis.Net.VehicleInputs.ItemByKey(VI_number1).AttValue("Volume(1)")	=	new_volume12	
Vis.Net.VehicleInputs.ItemByKey(VI_number2).AttValue("Volume(1)")	=	new_volume22	
Vis.Net.VehicleInputs.ItemByKey(VI_number3).AttValue("Volume(1)")	=	new_volume32	
Vis.Net.VehicleInputs.ItemByKey(VI_number4).AttValue("Volume(1)")	=	new_volume42	
Vis.Net.VehicleInputs.ItemByKey(VI_number5).AttValue("Volume(1)")	=	new_volume52	
(....	Continued	until	reaching	number	if	Vehicle	input	bars	in	VISSIM	model)	
	
'	Set	maximum	speed:	
Vis.Simulation.AttValue("UseMaxSimSpeed")	=	True	
'run	the	simulation		
Vis.Simulation.RunContinuous	
	
(Continued	until	SIMULATION	11_	+100%)	
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Appendix C: R-Studio Script to Format Raw VISSIM Output 
	
setwd("C:/…	Location	of	data	in	computer,	and	were	all	output	files	will	be	placed	")	

library(plyr)	

library(stringr)	

#	Read	full	data	

FullnetworkRaw	<-	read.csv("FullNetwork_Simulation.csv",header	=	FALSE)	

#	Add	column	headers	

colnames(FullnetworkRaw)	<-	
c("SimRunID","Time","No_","veh","VehType","Trav","Delay")	

#	Add	Helper	Column	

FullnetworkRaw$Helper	<-	paste(FullnetworkRaw$SimRunID,FullnetworkRaw$No_,sep	=	
"_")	

##############################################################
################	

#	Count	if	Help	=	Helper	

a	<-	as.data.frame(table(FullnetworkRaw$Helper))	

colnames(a)	<-	c("Helper","Q")	

#	Re-split	Helper	Column	to	add	Simulation	&	Link	variables	

a2	<-	as.data.frame(str_split_fixed(a$Helper,	"_",	2))	

a$SimRun	<-	a2$V1	

a$Link	<-	a2$V2	

#	Re-arrange	columns	

a	<-	a[c("SimRun",	"Link",	"Helper",	"Q")]	

#------------------------------------------------------------------------------------------------------------------
#	

#	Average	if,	for	all	unique	values	of	Help/Helper	Travel	Time	

b	<-	as.data.frame(sapply(split(FullnetworkRaw$Trav,FullnetworkRaw$Helper),	mean))	

colnames(b)	<-	c("TravelTime")	

b$Helper	<-	a$Helper	
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#------------------------------------------------------------------------------------------------------------------
#	

#	Average	if,	for	all	unique	values	of	Help/Helper	Travel	Time	

c	<-	as.data.frame(sapply(split(FullnetworkRaw$Delay,FullnetworkRaw$Helper),	mean))	

colnames(c)	<-	c("Delay")	

c$Helper	<-	a$Helper	

#	Merge	Final	Data	

d	<-	merge(a,b,by=c("Helper"))	

Final	<-	merge(d,c,by=c("Helper"))	

#	Include	FreeFlowTravelTime	Variable	Free	Flow	Travel	Time	->	FFTT	

Final$FreeFlowTravelTime	<-	(Final$TravelTime	-	Final$Delay)	

#	Write	to	CSV	

write.csv(Final,"FinalData.csv")	
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Appendix D: R-Studio Script to Perform Non-Linear Regression and 
Obtain Travel Time Functions 

	
setwd("C:/…	Location	of	data	in	computer,	and	were	all	output	files	will	be	placed	")	
library(latticeExtra)	
library(plyr)	
	
FullData	<-	read.table("FinalData.txt",	header	=	TRUE)	
	
#	Subset	Data	by	Link	
Link1	<-	FullData[	which(FullData$Link=='1'),	]	
Link2	<-	FullData[	which(FullData$Link=='2'),	]	
Link3	<-	FullData[	which(FullData$Link=='3'),	]	
Link4	<-	FullData[	which(FullData$Link=='4'),	]	
(....	Continued	for	all	data	links)	
	
#	Identify	mean	free	flow	travel	time	variable	FFT	
FFT_1<-	mean(Link1$FreeFlowTravelTime)	
FFT_2<-	mean(Link2$FreeFlowTravelTime)	
FFT_3<-	mean(Link3$FreeFlowTravelTime)	
FFT_4<-	mean(Link4$FreeFlowTravelTime)	
	
#	Bind	Free	Flow	Data	
FreeFlowAverages	<-	rbind(	
		FFT_1,	
		FFT_2,	
		FFT_3,	
		FFT_4,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(FreeFlowAverages,	"FreeFlowAverages.csv")	
	
#	Identify	Travel	Time	Variable	
TT_1	<-	Link1$TravelTime	
TT_2	<-	Link2$TravelTime	
TT_3	<-	Link3$TravelTime	
TT_4	<-	Link4$TravelTime	
(....	Continued	for	all	data	links)	
	
#	Identify	Flow	Variable	
Q_1	<-Link1$Q	
Q_2	<-Link2$Q	
Q_3	<-Link3$Q	
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Q_4	<-Link4$Q	
(....	Continued	for	all	data	links)	
	
#	Identify	Delay	Variable	
D_1	<-Link1$Delay	
D_2	<-Link2$Delay	
D_3	<-Link3$Delay	
D_4	<-Link4$Delay	
(....	Continued	for	all	data	links)	
	
	
#	Fit	nonlinear	model	[t	=	FFT	+	X*(Q)^2]	
Est_TT_1	<-		lm(TT_1~-1+I(Q_1^2),	offset=rep(FFT_1,	length(Q_1)))	
Est_TT_2	<-		lm(TT_2~-1+I(Q_2^2),	offset=rep(FFT_2,	length(Q_2)))	
Est_TT_3	<-		lm(TT_3~-1+I(Q_3^2),	offset=rep(FFT_3,	length(Q_3)))	
Est_TT_4	<-		lm(TT_4~-1+I(Q_4^2),	offset=rep(FFT_4,	length(Q_4)))	
(....	Continued	for	all	data	links)	
	
#	Fit	nonlinear	model	[Delay	=	Zero	Delay	+	X*(Q)^2]	
Est_D_1	<-		lm(D_1~-1+I(Q_1^2))	
Est_D_2	<-		lm(D_2~-1+I(Q_2^2))	
Est_D_3	<-		lm(D_3~-1+I(Q_3^2))	
Est_D_4	<-		lm(D_4~-1+I(Q_4^2))	
(....	Continued	for	all	data	links)	
	
#	Extract	Model	Estimates	
Link1Coef	<-	Est_TT_1$coefficients	
Link2Coef	<-	Est_TT_2$coefficients	
Link3Coef	<-	Est_TT_3$coefficients	
Link4Coef	<-	Est_TT_4$coefficients	
(....	Continued	for	all	data	links)	
	
#	Bind	Coefficient	Data	
NetworkTTCoefficients	<-	rbind(	
		Link1Coef,	
		Link2Coef,	
		Link3Coef,	
		Link4Coef,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(NetworkTTCoefficients,	"	NetworkTTCoefficients.csv")	
	
#	R-Square	Values	
Link1Rsquare	<-	summary(Est_TT_1)$r.squared	
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Link2Rsquare	<-	summary(Est_TT_2)$r.squared	
Link3Rsquare	<-	summary(Est_TT_3)$r.squared	
Link4Rsquare	<-	summary(Est_TT_4)$r.squared	
(....	Continued	for	all	data	links)	
	
#	Bind	Rquare	Data	
NetworkRSquare	<-	rbind(	
		Link1Rsquare,	
		Link2Rsquare,	
		Link3Rsquare,	
		Link4Rsquare,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(NetworkRSquare,	"	NetworkRSquare.csv")	
	
#	Adjusted	R-Square	Values	
Link1AdjRsquare	<-	summary(Est_TT_1)$adj.r.squared	
Link2AdjRsquare	<-	summary(Est_TT_2)$adj.r.squared	
Link3AdjRsquare	<-	summary(Est_TT_3)$adj.r.squared	
Link4AdjRsquare	<-	summary(Est_TT_4)$adj.r.squared	
(....	Continued	for	all	data	links)	
	
#	Bind	Adjusted	Rquare	Data	
NetworkAdjRSquare	<-	rbind(	
		Link1AdjRsquare,	
		Link2AdjRsquare,	
		Link3AdjRsquare,	
		Link4AdjRsquare,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(NetworkAdjRSquare,	"	NetworkAdjRSquare.csv")	
	
#	Delay	Coefficients	
Link1DelayCoef	<-	Est_D_1$coefficients	
Link2DelayCoef	<-	Est_D_2$coefficients	
Link3DelayCoef	<-	Est_D_3$coefficients	
Link4DelayCoef	<-	Est_D_4$coefficients	
(....	Continued	for	all	data	links)	
	
#	Bind	Delay	Coefficients	
NetworkDelayCoefficients	<-	rbind(	
		Link1DelayCoef,	
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		Link2DelayCoef,	
		Link3DelayCoef,	
		Link4DelayCoef,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(NetworkDelayCoefficients,	"	NetworkDelayCoefficients.csv")	
	
#	Delay	R-Square	
Link1DelayRsquare	<-	summary(Est_D_1)$r.squared	
Link2DelayRsquare	<-	summary(Est_D_2)$r.squared	
Link3DelayRsquare	<-	summary(Est_D_3)$r.squared	
Link4DelayRsquare	<-	summary(Est_D_4)$r.squared	
(....	Continued	for	all	data	links)	
	
#	Delay	R	Squared	Bind	
NetworkDelayRSquare	<-	rbind(	
		Link1DelayRsquare,	
		Link2DelayRsquare,	
		Link3DelayRsquare,	
		Link4DelayRsquare,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(NetworkDelayRSquare,	"	NetworkDelayRSquare.csv")	
	
#	Delay	Adj	R-Square	
Link1DelayAdjRsquare	<-	summary(Est_D_1)$adj.r.squared	
Link2DelayAdjRsquare	<-	summary(Est_D_2)$adj.r.squared	
Link3DelayAdjRsquare	<-	summary(Est_D_3)$adj.r.squared	
Link4DelayAdjRsquare	<-	summary(Est_D_4)$adj.r.squared	
	
#	Bind	Delay	Adjustred-Square	
NetworkDelayAdjRSquare	<-	rbind(	
		Link1DelayAdjRsquare,	
		Link2DelayAdjRsquare,	
		Link3DelayAdjRsquare,	
		Link4DelayAdjRsquare,	
(....	Continued	for	all	data	links)	
…)	
	
#	Export	to	csv	
write.csv(NetworkDelayAdjRSquare,	"	NetworkDelayAdjRSquare.csv")	
	


